

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

<u>Texas Instruments</u> <u>LM94022BIMG/NOPB</u>

For any questions, you can email us directly: sales@integrated-circuit.com

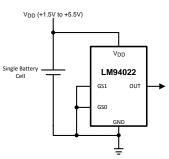
Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

LM94022, LM94022-Q1

SNIS140F - MAY 2006-REVISED SEPTEMBER 2015

LM94022/-Q1 1.5-V, SC70, Multi-Gain Analog Temperature Sensor With Class-AB Output


1 Features

- LM94022/-Q1 is AEC-Q100 Grade 0 qualified and is Manufactured on an Automotive Grade Flow
- Low 1.5-V to 5.5-V Operation With Low 5.4-μA Supply Current
- Push-Pull Output With ±50-µA Source Current Capability
- Four Selectable Gains
- Very Accurate Over Wide Temperature Range of -50°C to +150°C:
 - ±1.5°C Temperature Accuracy for 20°C to 40°C Range
 - ±1.8°C Temperature Accuracy for –50°C to 70°C Range
 - ±2.1°C Temperature Accuracy for –50°C to 90°C Range
 - ±2.7°C Temperature Accuracy for –50°C to 150°C Range
- · Output is Short-Circuit Protected
- Extremely Small SC70 Package
- For the Similar Functionality in a TO-92 Package, See LMT84, LMT85, LMT86, or LMT87
- Footprint Compatible With the Industry-Standard LM20 Temperature Sensor

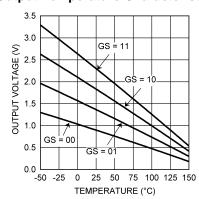
2 Applications

- Automotive
- Cell Phones
- Wireless Transceivers
- Battery Management
- Disk Drives
- Games
- Appliances

Full-Range Celsius Temperature Sensor (-50°C to +150°C) Operating from a Single Cell Battery

3 Description

The LM94022/-Q1 device is a precision analog output CMOS integrated-circuit temperature sensor with selectable linear negative temperature coefficient (NTC). A class-AB output structure gives the LM94022/-Q1 strong output source and sink current capability for driving heavy transient loads such as that presented by the input of a sample-and-hold analog-to-digital converter. The low 5.4-µA supply current and 1.5-V operating voltage of the LM94022/-Q1 make it ideal for battery-powered systems as well as general temperature-sensing applications.


The Gain Select 1 (GS1) and Gain Select 0 (GS0) logic inputs select one of four gains for the temperature-to-voltage output transfer function: -5.5 mV/°C, -8.2 mV/°C, -10.9 mV/°C, and -13.6 mV/°C. Selecting -5.5 mV/°C (GS1 and GS0 both tied low), allows the LM94022/-Q1 to operate down to 1.5-V supply while measuring temperature over the full range of -50°C to +150°C. Maximum temperature sensitivity, -13.6 mV/°C, is selected when GS1 and GS0 are both tied high. The gain-select inputs can be tied directly to V_{DD} or Ground without any pullup or pulldown resistors, reducing component count and board area. These inputs can also be driven by logic signals allowing the system to optimize the gain during operation or system diagnostics.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
LM94022	CC70 (F)	2.00 mm 4.25 mm
LM94022-Q1	SC70 (5)	2.00 mm × 1.25 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Output Temperature Characteristic

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

LM94022, LM94022-Q1

SNIS140F-MAY 2006-REVISED SEPTEMBER 2015

www.ti.com

_			•	_	- 4	-
12	n	Ω	∩ t	1 ^	nto	nts
10	w	ı	VI.	\mathbf{c}	IIIC	III

1	Features 1	8 Application and Implementation 16
2	Applications 1	8.1 Application Information
3	Description 1	8.2 Typical Application
4	Revision History2	8.3 System Examples 18
5	Pin Configuration and Functions	9 Power Supply Recommendations 19
6	Specifications	10 Layout
U	6.1 Absolute Maximum Ratings	10.1 Layout Guidelines 19
	6.2 ESD Ratings	10.2 Layout Example20
	6.3 Recommended Operating Conditions	10.3 Output and Noise Considerations
	6.4 Thermal Information	11 Device and Documentation Support 21
	6.5 Electrical Characteristics	11.1 Related Links 21
	6.6 Typical Characteristics	11.2 Community Resources21
7	Detailed Description9	11.3 Trademarks
•	7.1 Overview	11.4 Electrostatic Discharge Caution
	7.2 Functional Block Diagram	11.5 Glossary21
	7.3 Feature Description	12 Mechanical, Packaging, and Orderable
	7.4 Device Functional Modes	Information

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision E (June 2013) to Revision F

Page

Added or changed: Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ______1

Changes from Revision D (February 2013) to Revision E

Page

added parabolic equation for LM94022/-Q11

Changes from Revision C (May 2005) to Revision D

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.ti.com

LM94022, LM94022-Q1

SNIS140F - MAY 2006 - REVISED SEPTEMBER 2015

5 Pin Configuration and Functions

Pin Functions

PIN		TVDE	FOLINAL FAIT CIDCUIT	FUNCTION
NAME	NO.	TYPE	EQUIVALENT CIRCUIT	FUNCTION
GS1	5	Logic Input	V _{DD} ESD CLAMP	Gain Select 1 - One of two logic inputs for selecting the slope of the output response
GS0	1	Logic Input		Gain Select 0 - One of two logic inputs for selecting the slope of the output response
OUT	3	Analog Output	V _{DD}	Outputs a voltage which is inversely proportional to temperature
V_{DD}	4	Power	-	Positive Supply Voltage
GND	2	Ground	_	Power Supply Ground

Copyright © 2006–2015, Texas Instruments Incorporated

Submit Documentation Feedback

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

LM94022, LM94022-Q1

SNIS140F-MAY 2006-REVISED SEPTEMBER 2015

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)

	MIN	MAX	UNIT
Supply Voltage	-0.3	6	V
Voltage at Output Pin	-0.3	(V _{DD} + 0.5)	V
Output Current		±7	mA
Voltage at GS0 and GS1 Input Pins	-0.3	6	V
Input Current at any pin ⁽³⁾		5	mA
Maximum Junction Temperature, T _{JMAX}		150	°C
Storage temperature, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
\/	Floatroatatio dia shares	Human body model (HBM) ⁽¹⁾ (2)	±2500	V
V _(ESD)	Electrostatic discharge	Machine model ⁽²⁾	±250	V

¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

	MIN	MAX	UNIT
Free Air or Specified Temperature			
$(T_{MIN} \le T_A \le T_{MAX})$	-50	150	°C
Supply Voltage (V _{DD})	1.5	5.5	V

⁽¹⁾ Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

6.4 Thermal Information

	LM94022, LM94022-Q1	
THERMAL METRIC ⁽¹⁾	DCK (SC70)	UNIT
	5 PINS	
R _{θJA} Junction-to-ambient thermal resistance	415	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

Submit Documentation Feedback

Copyright © 2006–2015, Texas Instruments Incorporated

⁽²⁾ Soldering process must comply with Reflow Temperature Profile specifications. Refer to http://www.ti.com/packaging

⁽³⁾ When the input voltage (V_1) at any pin exceeds power supplies $(V_1 < GND \text{ or } V_1 > V^+)$, the current at that pin should be limited to 5 mA.

²⁾ The human body model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin. The machine model is a 200-pF capacitor discharged directly into each pin.

www.ti.com

Distributor of Texas Instruments: Excellent Integrated System Limited

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

LM94022, LM94022-Q1

SNIS140F - MAY 2006 - REVISED SEPTEMBER 2015

6.5 Electrical Characteristics

Unless otherwise noted, these specifications apply for V_{DD} = 1.5 V to 5.5 V; all limits T_A = T_J = 25°C unless otherwise specified. These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in the

PARAMETER		CONDITIONS	MIN	TYP ⁽¹⁾ MAX ⁽²⁾	UNIT
CCURACY CHARACTERIS	TICS				
		$T_A = +20^{\circ}\text{C to } +40^{\circ}\text{C};$ $V_{DD} = 1.5 \text{ V to } 5.5 \text{ V}$	-1.5	1.5	°C
		$T_A = +0^{\circ}C \text{ to } +70^{\circ}C;$ $V_{DD} = 1.5 \text{ V to } 5.5 \text{ V}$	-1.8	1.8	1.5 °C 1.8 °C 2.1 °C 2.4 °C 2.7 °C 1.8 °C 1.5 °C 1.8 °C 2.1 °C 2.4 °C 2.1 °C 2.4 °C 2.7 °C 1.8 °C 1.5 °C 1.8 °C 1.5 °C 1.8 °C 1.5 °C 1.8 °C 2.1 °C 2.4 °C 2.1 °C 2.4 °C 2.1 °C 2.4 °C 2.7 °C 1.8 °C 2.1 °C 2.4 °C 2.7 °C 2.4 °C
	GS1 = 0	$T_A = +0^{\circ}C \text{ to } +90^{\circ}C;$ $V_{DD} = 1.5 \text{ V to } 5.5 \text{ V}$	-2.1	2.1	°C
	GS0 = 0	$T_A = +0^{\circ}C \text{ to } +120^{\circ}C;$ $V_{DD} = 1.5 \text{ V to } 5.5 \text{ V}$	-2.4	2.4	
		$T_A = +0^{\circ}C \text{ to } +150^{\circ}C;$ $V_{DD} = 1.5 \text{ V to } 5.5 \text{ V}$	-2.7	2.7	°C
		$T_A = -50^{\circ}\text{C to } +0^{\circ}\text{C};$ $V_{DD} = 1.6 \text{ V to } 5.5 \text{ V}$	-1.8	1.8	°C
		$T_A = +20^{\circ}\text{C to } +40^{\circ}\text{C};$ $V_{DD} = 1.8 \text{ V to } 5.5 \text{ V}$	-1.5	1.5	°C
		$T_A = +0^{\circ}\text{C to } +70^{\circ}\text{C};$ $V_{DD} = 1.9 \text{ V to } 5.5 \text{ V}$	-1.8	1.8	°C
	GS1 = 0	$T_A = +0^{\circ}\text{C to } +90^{\circ}\text{C};$ $V_{DD} = 1.9 \text{ V to } 5.5 \text{ V}$	-2.1	2.1	°C
	GS0 = 1	$T_A = +0^{\circ}\text{C to } +120^{\circ}\text{C};$ $V_{DD} = 1.9 \text{ V to } 5.5 \text{ V}$	-2.4	2.4	\$\frac{1}{2}\$\$\fr
		$T_A = +0^{\circ}\text{C to } +150^{\circ}\text{C};$ $V_{DD} = 1.9 \text{ V to } 5.5 \text{ V}$	-2.7	2.7	°C
Temperature Error ⁽³⁾		$T_A = -50^{\circ}\text{C to } +0^{\circ}\text{C};$ $V_{DD} = 2.3 \text{ V to } 5.5 \text{ V}$	-1.8	1.8	°C
remperature Endi		$T_A = +20^{\circ}\text{C to } +40^{\circ}\text{C};$ $V_{DD} = 2.2 \text{ V to } 5.5 \text{ V}$	-1.5	1.5	°C
		$T_A = +0^{\circ}\text{C to } +70^{\circ}\text{C};$ $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V}$	-1.8	1.8	°C
	GS1 = 1	$T_A = +0^{\circ}C \text{ to } +90^{\circ}C;$ $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V}$	-2.1	2.1	°C
	GS0 = 0	$T_A = +0^{\circ}\text{C to } +120^{\circ}\text{C};$ $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V}$	-2.4	2.4	°C
		$T_A = +0^{\circ}\text{C to } +150^{\circ}\text{C};$ $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V}$	-2.7	2.7	°C
		$T_A = -50^{\circ}\text{C to } +0^{\circ}\text{C};$ $V_{DD} = 3.0 \text{ V to } 5.5 \text{ V}$	-1.8	1.8	°C
		$T_A = +20^{\circ}\text{C to } +40^{\circ}\text{C};$ $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}$	-1.5	1.5	°C
		$T_A = +0^{\circ}C \text{ to } +70^{\circ}C;$ $V_{DD} = 3.0 \text{ V to } 5.5 \text{ V}$	-1.8	1.8	°C
	GS1 = 1	$T_A = +0^{\circ}\text{C to } +90^{\circ}\text{C};$ $V_{DD} = 3.0 \text{ V to } 5.5 \text{ V}$	-2.1	2.1	°C
	GS0 = 1	$T_A = +0^{\circ}\text{C to } +120^{\circ}\text{C};$ $V_{DD} = 3.0 \text{ V to } 5.5 \text{ V}$	-2.4	2.4	°C
		$T_A = 0^{\circ}\text{C to } +150^{\circ}\text{C};$ $V_{DD} = 3.0 \text{ V to } 5.5 \text{ V}$	-2.7	2.7	°C
		$T_A = -50^{\circ}\text{C to } +0^{\circ}\text{C};$ $V_{DD} = 3.6 \text{ V to } 5.5 \text{ V}$	-1.8	1.8	°C

Typicals are at $T_J = T_A = 25^{\circ}\text{C}$ and represent most likely parametric norm. Limits are warrantied to TI's AOQL (Average Outgoing Quality Level).

Copyright © 2006-2015, Texas Instruments Incorporated

Submit Documentation Feedback

Product Folder Links: LM94022 LM94022-Q1

Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Transfer Table at the specified conditions of supply gain setting, voltage, and temperature (expressed in °C). Accuracy limits include line regulation within the specified conditions. Accuracy limits do not include load regulation; they assume no DC load.

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

LM94022, LM94022-Q1

SNIS140F-MAY 2006-REVISED SEPTEMBER 2015

www.ti.com

Electrical Characteristics (continued)

Unless otherwise noted, these specifications apply for $V_{DD} = 1.5 \text{ V}$ to 5.5 V; all limits $T_A = T_J = 25^{\circ}\text{C}$ unless otherwise specified. These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in the Table 2.

	PARAMETER	СО	NDITIONS	MIN	TYP ⁽¹⁾	MAX ⁽²⁾	UNIT	
		GS1 = 0, GS0 = 0			-5.5		mV/°C	
	Sensor Gain	GS1 = 0, GS0 = 1		-8.2		mV/°C		
		GS1 = 1, GS0 = 0			-10.9		mV/°C	
		GS1 = 1, GS0 = 1			-13.6		mV/°C	
		Source ≤ 50 μA,			-0.22		mV	
	Load Regulation ⁽⁴⁾	$(V_{DD} - V_{OUT}) \ge 200 \text{ mV}$	$T_A = T_J = T_{MIN}$ to T_{MAX}			-1	IIIV	
	Load Regulation 7	Sink ≤ 50 μA,			0.26		mV	
		V _{OUT} ≥ 200 mV	$T_A = T_J = T_{MIN}$ to T_{MAX}			1	IIIV	
	Line Regulation ⁽⁵⁾				200		μV/V	
	S Supply Current		$(V_{DD} - V_{OUT}) \ge 100 \text{ mV}$			5.4		μA
		(22 001/	$T_A = T_J = +30^{\circ}C \text{ to } +150^{\circ}C$			8.1	μΑ	
I _S		,	()/ \/ \> 100 m\/			5.4		
		$(V_{DD} - V_{OUT}) \ge 100 \text{ mV}$	$T_A = T_J = T_{MIN}$ to T_{MAX}			9	μA	
C_{L}	Output Load Capacitance				1100		pF	
	Power-ON Time ⁽⁶⁾	$C_1 = 0 \text{ pF to } 1100 \text{ pF}$			0.7		ms	
	Fower-ON Time V	OL= 0 pr to 1100 pr	$T_A = T_J = T_{MIN}$ to T_{MAX}			1.9	1115	
V _{IH}	GS1 and GS0 Input Logic 1 Threshold Voltage	$T_A = T_J = T_{MIN}$ to T_{MAX}		V _{DD} – 0.5			V	
V_{IL}	GS1 and GS0 Input Logic 0 Threshold Voltage	$T_A = T_J = T_{MIN}$ to T_{MAX}				0.5	V	
					0.001			
I _{IH}	Logic 1 Input Current ⁽⁷⁾	$T_A = T_J = T_{MIN}$ to T_{MAX}				1	μA	
	1i- 0 l + 0 + (7)				0.001			
I _{IL}	Logic 0 Input Current ⁽⁷⁾	$T_A = T_J = T_{MIN}$ to T_{MAX}				1	μΑ	

⁽⁴⁾ Source currents are flowing out of the LM94022/-Q1. Sink currents are flowing into the LM94022/-Q1.

Submit Documentation Feedback

Copyright © 2006–2015, Texas Instruments Incorporated

⁽⁵⁾ Line regulation (DC) is calculated by subtracting the output voltage at the highest supply voltage from the output voltage at the lowest supply voltage. The typical DC line regulation specification does not include the output voltage shift discussed in Output Voltage Shift.

⁽⁶⁾ Warrantied by design and characterization.

⁽⁷⁾ The input current is leakage only and is highest at high temperature. It is typically only 0.001 μA. The 1-μA limit is solely based on a testing limitation and does not reflect the actual performance of the part.

www.ti.com

LM94022, LM94022-Q1

SNIS140F - MAY 2006 - REVISED SEPTEMBER 2015

6.6 Typical Characteristics

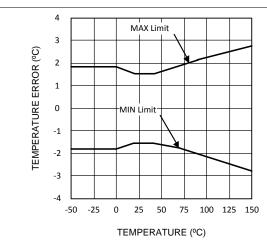


Figure 1. Temperature Error vs. Temperature

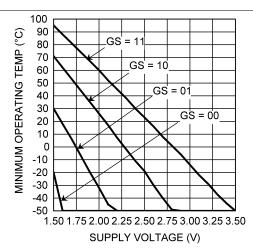


Figure 2. Minimum Operating Temperature vs. Supply Voltage

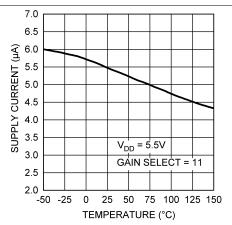


Figure 3. Supply Current vs. Temperature

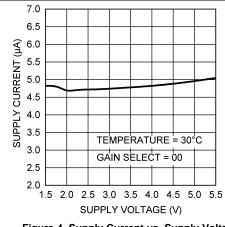
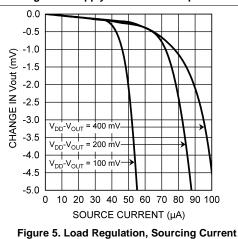



Figure 4. Supply Current vs. Supply Voltage

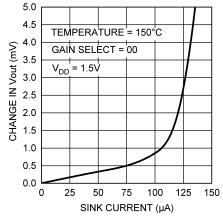


Figure 6. Load Regulation, Sinking Current

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

LM94022, LM94022-Q1

SNIS140F-MAY 2006-REVISED SEPTEMBER 2015

www.ti.com

Typical Characteristics (continued)

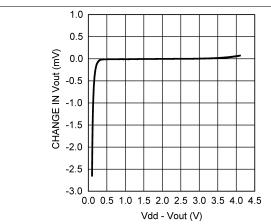


Figure 7. Change in Vout vs. Overhead Voltage

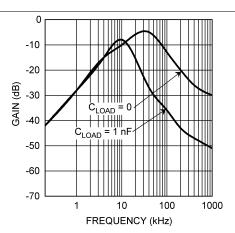


Figure 8. Supply-Noise Gain vs. Frequency

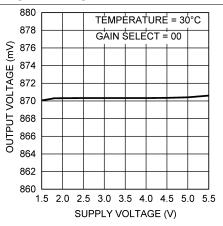


Figure 9. Output Voltage vs. Supply Voltage
Gain Select = 00

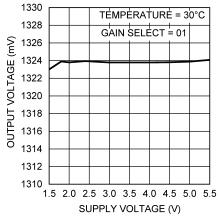


Figure 10. Output Voltage vs. Supply Voltage
Gain Select = 01

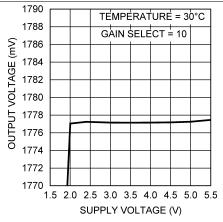


Figure 11. Output Voltage vs. Supply Voltage
Gain Select = 10

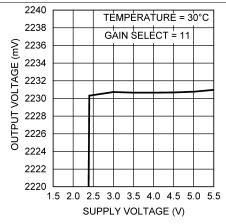


Figure 12. Output Voltage vs. Supply Voltage
Gain Select = 11

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.ti.com

LM94022, LM94022-Q1

SNIS140F-MAY 2006-REVISED SEPTEMBER 2015

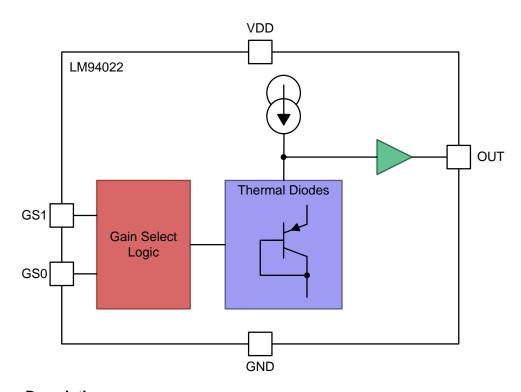
7 Detailed Description

7.1 Overview

The LM94022/-Q1 is an analog output temperature sensor with a selectable negative temperature coefficient output (NTC). The temperature-sensing element is comprised of stacked transistor base emitter junctions (thermal diodes) that are forward biased by a current source. The number of stacked thermal diodes determines the output gain or slope. The gain select pins (GS1 and GS0) are simple logic inputs that control the number of stacked thermal diodes thus selecting the output gain as shown in the Table 1 table. The temperature sensing element is buffered by a simple amplifier that drives the output pin. The simple class AB output stage of the amplifier can source or sink current and provides low-impedance, high-current drive.

 GS1 LOGIC LEVEL
 GS0 LOGIC LEVEL
 SELECTED AVERAGE GAIN

 0
 0
 -5.5 mV/°C


 0
 1
 -8.2 mV/°C

 1
 0
 -10.9 mV/°C

 1
 1
 -13.6 mV/°C

Table 1. Gain Select Pin Function

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 LM94022/-Q1 Transfer Function Gain Selection

The LM94022/-Q1 has four selectable gains, each of which can be selected by the GS1 and GS0 input pins. The output voltage for each gain, across the complete operating temperature range is shown in Table 2. This table is the reference from which the LM94022/-Q1 accuracy specifications (listed in the *Electrical Characteristics* section) are determined. This table can be used, for example, in a host processor look-up table. A file containing this data is available for download at LM94022 product folder under Tools and Software.

Product Folder Links: LM94022 LM94022-Q1

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

LM94022, LM94022-Q1

SNIS140F - MAY 2006-REVISED SEPTEMBER 2015

www.ti.com

Table 2. LM94022/LM94022-Q1 Transfer Table

TEMPERATURE		Table 2. LW94022/LW94022-QT Hallster Table						
-49 1294 1949 2607 3266 -48 1289 1942 2598 3254 -47 1284 1935 2589 3243 -46 1278 1928 2580 3232 -45 1273 1921 2671 3221 -44 1268 1915 2562 3210 -43 1263 1908 2553 3199 -42 1257 1900 2543 3186 -41 1252 1892 2553 3173 -40 1247 1885 2522 3160 -39 1242 1877 2512 3147 -38 1236 1869 2501 3134 -37 1231 1861 2491 3121 -36 1226 1853 2481 3108 -35 1221 1845 2470 3095 -34 1215 1838 2460 3082 </th <th></th> <th></th> <th></th> <th></th> <th></th>								
-48 1289 1942 2598 3254 -47 1284 1935 2589 3243 -46 1278 1928 2580 3232 -45 1273 1921 2571 3221 -44 1268 1915 2562 3210 -43 1263 1908 2553 3199 -42 1257 1900 2543 3186 -41 1252 1892 2533 3173 -40 1247 1885 2522 3160 -39 1242 1877 2512 3147 -38 1236 1869 2501 3134 -37 1231 1861 2491 3121 -36 1226 1853 2481 3108 -35 1221 1845 2470 3095 -34 1215 1838 2460 3062 -33 1210 1830 2449 3069 </td <td>-50</td> <td>1299</td> <td>1955</td> <td>2616</td> <td>3277</td>	-50	1299	1955	2616	3277			
-47 1284 1935 2589 3243 -46 1278 1928 2580 3232 -45 1273 1921 2571 3221 -44 1268 1915 2562 3210 -43 1263 1908 2553 3199 -42 1257 1900 2543 3186 -41 1252 1882 2533 3173 -40 1247 1885 2522 3160 -39 1242 1877 2512 3147 -38 1236 1869 2501 3134 -37 1231 1861 2491 3121 -36 1226 1853 2481 3108 -35 1221 1845 2470 3095 -34 1215 1838 2460 3082 -33 1210 1830 2449 3069 -32 1205 1822 2439 3056 </td <td>-49</td> <td>1294</td> <td>1949</td> <td>2607</td> <td>3266</td>	-49	1294	1949	2607	3266			
-46 1278 1928 2580 3232 -45 1273 1921 2571 3221 -44 1268 1915 2562 3210 -43 1263 1908 2553 3199 -42 1257 1900 2543 3186 -41 1252 1892 2533 3173 -40 1247 1885 2522 3160 -39 1242 1877 2512 3147 -38 1236 1869 2501 3134 -37 1231 1861 2491 3121 -36 1226 1853 2481 3108 -35 1221 1845 2470 3095 -34 1215 1838 2460 3082 -33 1210 1830 2449 3069 -32 1205 1822 2439 3056 -31 1200 1814 2429 3043 </td <td>-48</td> <td>1289</td> <td>1942</td> <td>2598</td> <td>3254</td>	-48	1289	1942	2598	3254			
-45 1273 1921 2571 3221 -44 1268 1915 2562 3210 -43 1263 1908 2553 31199 -42 1257 1900 2543 3186 -41 1252 1892 2533 3173 -40 1247 1885 2522 3160 -39 1242 1887 2512 3147 -38 1236 1869 2501 3134 -37 1231 1861 2491 3121 -36 1226 1853 2481 3108 -35 1221 1845 2470 3095 -34 1215 1838 2460 3082 -33 1210 1830 2449 3069 -32 1205 1822 2439 3056 -31 1200 1814 2429 3043 -29 1189 1798 2408 3017 <	-47	1284	1935	2589	3243			
-44 1268 1915 2562 3210 -43 1263 1908 2553 3199 -42 1257 1900 2543 3186 -41 1252 1892 2533 3173 -40 1247 1885 2522 3160 -39 1242 1877 2512 3147 -38 1236 1869 2501 3134 -37 1231 1861 2491 3121 -36 1226 1853 2481 3108 -35 1221 1845 2470 3095 -34 1215 1838 2460 3082 -33 1210 1830 2449 3069 -32 1205 1822 2439 3066 -31 1200 1814 2429 3043 -30 1194 1806 2418 3030 -29 1189 1798 2408 3017 </td <td>-46</td> <td>1278</td> <td>1928</td> <td>2580</td> <td>3232</td>	-46	1278	1928	2580	3232			
-43 1263 1908 2553 3199 -42 1257 1900 2543 3186 -41 1252 1892 2533 3173 -40 1247 1885 2522 3160 -39 1242 1877 2512 3147 -38 1236 1869 2501 3134 -37 1231 1861 2491 3121 -36 1226 1853 2481 3108 -35 1221 1845 2470 3095 -34 1215 1838 2460 3082 -33 1210 1830 2449 3069 -32 1205 1822 2439 3056 -31 1200 1814 2429 3043 -30 1194 1806 2418 3030 -29 1189 1798 2408 3017 -28 1184 1790 2397 3004 </td <td>-45</td> <td>1273</td> <td>1921</td> <td>2571</td> <td>3221</td>	-45	1273	1921	2571	3221			
-42 1257 1900 2543 3186 -41 1252 1892 2533 3173 -40 1247 1885 2522 3160 -39 1242 1877 2512 3147 -38 1226 1869 2501 3134 -37 1231 1861 2491 3121 -36 1226 1853 2481 3108 -35 1221 1845 2470 3095 -34 1215 1838 2460 3082 -33 1210 1830 2449 3069 -32 1205 1822 2439 3056 -31 1200 1814 2429 3043 -30 1194 1806 2418 3030 -29 1189 1798 2408 3017 -28 1184 1790 2397 3004 -27 1178 1783 2387 2991 </td <td>-44</td> <td>1268</td> <td>1915</td> <td>2562</td> <td>3210</td>	-44	1268	1915	2562	3210			
-41 1252 1892 2533 3173 -40 1247 1885 2522 3160 -39 1242 1877 2512 3147 -38 1236 1869 2501 3134 -37 1231 1861 2491 3121 -36 1226 1853 2481 3108 -35 1221 1845 2470 3095 -34 1215 1838 2460 3082 -33 1210 1830 2449 3069 -32 1205 1822 2439 3066 -31 1200 1814 2429 3043 -30 1194 1806 2418 3030 -29 1189 1798 2408 3017 -28 11184 1790 2397 3004 -27 1178 1783 2387 2991 -26 1173 1775 2376 2978 <	-43	1263	1908	2553	3199			
-40 1247 1885 2522 3160 -39 1242 1877 2512 3147 -38 1236 1869 2501 3134 -37 1231 1861 2491 3121 -36 1226 1853 2481 3108 -35 1221 1845 2470 3095 -34 1215 1838 2460 3082 -33 1210 1830 2449 3069 -32 1205 1822 2439 3056 -31 1200 1814 2429 3043 -30 1194 1806 2418 3030 -29 1189 1798 2408 3017 -28 1184 1790 2397 3004 -27 1178 1783 2387 2991 -26 1173 1775 2376 2978 -25 1168 1767 2366 2965 </td <td>-42</td> <td>1257</td> <td>1900</td> <td>2543</td> <td>3186</td>	-42	1257	1900	2543	3186			
-39 1242 1877 2512 3147 -38 1236 1869 2501 3134 -37 1231 1861 2491 3121 -36 1226 1853 2481 3108 -35 1221 1845 2470 3095 -34 1215 1838 2460 3082 -33 1210 1830 2449 3069 -32 1205 1822 2439 3056 -31 1200 1814 2429 3043 -30 1194 1806 2418 3030 -29 1189 1798 2408 3017 -28 1184 1790 2397 3004 -27 1178 1783 2387 2991 -26 1173 1775 2376 2978 -25 1168 1767 2366 2965 -24 1162 1759 2355 2952 </td <td>-41</td> <td>1252</td> <td>1892</td> <td>2533</td> <td>3173</td>	-41	1252	1892	2533	3173			
-38 1236 1869 2501 3134 -37 1231 1861 2491 3121 -36 1226 1853 2481 3108 -35 1221 1845 2470 3095 -34 1215 1838 2460 3082 -33 1210 1830 2449 3069 -32 1205 1822 2439 3056 -31 1200 1814 2429 3043 -30 1194 1806 2418 3030 -29 1189 1798 2408 3017 -28 1184 1790 2397 3004 -29 1178 1783 2387 2991 -27 1178 1783 2387 2991 -27 1178 1783 2387 2991 -25 1168 1767 2366 2965 -24 1162 1759 2355 2952 </td <td>-40</td> <td>1247</td> <td>1885</td> <td>2522</td> <td>3160</td>	-40	1247	1885	2522	3160			
-37 1231 1861 2491 3121 -36 1226 1853 2481 3108 -35 1221 1845 2470 3095 -34 1215 1838 2460 3082 -33 1210 1830 2449 3069 -32 1205 1822 2439 3056 -31 1200 1814 2429 3043 -30 1194 1806 2418 3030 -29 1189 1798 2408 3017 -28 1184 1790 2397 3004 -27 1178 1783 2387 2991 -28 1184 1790 2397 3004 -27 1178 1783 2387 2991 -26 11173 1775 2376 2978 -25 1168 1767 2366 2965 -24 1162 1759 2355 2952 <	-39	1242	1877	2512	3147			
-36 1226 1853 2481 3108 -35 1221 1845 2470 3095 -34 1215 1838 2460 3082 -33 1210 1830 2449 3069 -32 1205 1822 2439 3056 -31 1200 1814 2429 3043 -30 1194 1806 2418 3030 -29 1189 1798 2408 3017 -28 1184 1790 2397 3004 -27 1178 1783 2387 2991 -26 1173 1775 2376 2978 -25 1168 1767 2366 2965 -24 1162 1759 2355 2952 -23 1157 1751 2345 2938 -22 1152 1743 2334 2925 -21 1146 1735 2324 2912 </td <td>-38</td> <td>1236</td> <td>1869</td> <td>2501</td> <td>3134</td>	-38	1236	1869	2501	3134			
-35 1221 1845 2470 3095 -34 1215 1838 2460 3082 -33 1210 1830 2449 3069 -32 1205 1822 2439 3056 -31 1200 1814 2429 3043 -30 1194 1806 2418 3030 -29 1189 1798 2408 3017 -28 1184 1790 2397 3004 -27 1178 1783 2387 2991 -26 1173 1775 2376 2978 -25 1168 1767 2366 2965 -24 1162 1759 2355 2952 -23 1157 1751 2345 2938 -22 1152 1743 2334 2925 -21 1146 1735 2324 2912 -20 1141 1727 2313 2899 </td <td>-37</td> <td>1231</td> <td>1861</td> <td>2491</td> <td>3121</td>	-37	1231	1861	2491	3121			
-34 1215 1838 2460 3082 -33 1210 1830 2449 3069 -32 1205 1822 2439 3056 -31 1200 1814 2429 3043 -30 1194 1806 2418 3030 -29 1189 1798 2408 3017 -28 1184 1790 2397 3004 -27 1178 1783 2387 2991 -26 1173 1775 2376 2978 -25 1168 1767 2366 2965 -24 1162 1759 2355 2952 -23 1157 1751 2345 2938 -22 1152 1743 2334 2925 -21 1146 1735 2324 2912 -20 1141 1727 2313 2899 -19 1136 1719 2302 2886 </td <td>-36</td> <td>1226</td> <td>1853</td> <td>2481</td> <td>3108</td>	-36	1226	1853	2481	3108			
-33 1210 1830 2449 3069 -32 1205 1822 2439 3056 -31 1200 1814 2429 3043 -30 1194 1806 2418 3030 -29 1189 1798 2408 3017 -28 1184 1790 2397 3004 -27 1178 1783 2387 2991 -26 1173 1775 2376 2978 -25 1168 1767 2366 2965 -24 1162 1759 2355 2952 -23 1157 1751 2345 2938 -22 1152 1743 2334 2925 -21 1146 1735 2324 2912 -19 1136 1719 2302 2886 -19 1136 1719 2302 2886 -18 1130 1711 2292 2873 </td <td>-35</td> <td>1221</td> <td>1845</td> <td>2470</td> <td>3095</td>	-35	1221	1845	2470	3095			
-32 1205 1822 2439 3056 -31 1200 1814 2429 3043 -30 1194 1806 2418 3030 -29 1189 1798 2408 3017 -28 1184 1790 2397 3004 -27 1178 1783 2387 2991 -26 1173 1775 2376 2978 -25 1168 1767 2366 2965 -24 1162 1759 2355 2952 -23 1157 1751 2345 2938 -22 1152 1743 2334 2925 -21 1146 1735 2324 2912 -20 1141 1727 2313 2899 -19 1136 1719 2302 2886 -18 1130 1711 2292 2873 -17 1125 1703 2281 2859 </td <td>-34</td> <td>1215</td> <td>1838</td> <td>2460</td> <td>3082</td>	-34	1215	1838	2460	3082			
-31 1200 1814 2429 3043 -30 1194 1806 2418 3030 -29 1189 1798 2408 3017 -28 1184 1790 2397 3004 -27 1178 1783 2387 2991 -26 1173 1775 2376 2978 -25 1168 1767 2366 2965 -24 1162 1759 2355 2952 -23 1157 1751 2345 2938 -22 1152 1743 2334 2925 -21 1146 1735 2324 2912 -20 1141 1727 2313 2899 -19 1136 1719 2302 2886 -18 1130 1711 2292 2873 -17 1125 1703 2281 2859 -16 1120 1695 2271 2846 </td <td>-33</td> <td>1210</td> <td>1830</td> <td>2449</td> <td>3069</td>	-33	1210	1830	2449	3069			
-30 1194 1806 2418 3030 -29 1189 1798 2408 3017 -28 1184 1790 2397 3004 -27 1178 1783 2387 2991 -26 1173 1775 2376 2978 -25 1168 1767 2366 2965 -24 1162 1759 2355 2952 -23 1157 1751 2345 2938 -22 1152 1743 2334 2925 -21 1146 1735 2324 2912 -20 1141 1727 2313 2899 -19 1136 1719 2302 2886 -18 1130 1711 2292 2873 -17 1125 1703 2281 2859 -16 1120 1695 2271 2846 -15 1114 1687 2260 2833 </td <td>-32</td> <td>1205</td> <td>1822</td> <td>2439</td> <td>3056</td>	-32	1205	1822	2439	3056			
-29 1189 1798 2408 3017 -28 1184 1790 2397 3004 -27 1178 1783 2387 2991 -26 1173 1775 2376 2978 -25 1168 1767 2366 2965 -24 1162 1759 2355 2952 -23 1157 1751 2345 2938 -22 1152 1743 2334 2925 -21 1146 1735 2324 2912 -20 1141 1727 2313 2899 -19 1136 1719 2302 2886 -18 1130 1711 2292 2873 -17 1125 1703 2281 2859 -16 1120 1695 2271 2846 -15 1114 1687 2260 2833 -14 1109 1679 2250 2820 </td <td>-31</td> <td>1200</td> <td>1814</td> <td>2429</td> <td>3043</td>	-31	1200	1814	2429	3043			
-28 1184 1790 2397 3004 -27 1178 1783 2387 2991 -26 1173 1775 2376 2978 -25 1168 1767 2366 2965 -24 1162 1759 2355 2952 -23 1157 1751 2345 2938 -22 1152 1743 2334 2925 -21 1146 1735 2324 2912 -20 1141 1727 2313 2899 -19 1136 1719 2302 2886 -18 1130 1711 2292 2873 -17 1125 1703 2281 2859 -16 1120 1695 2271 2846 -15 1114 1687 2260 2833 -14 1109 1679 2250 2820 -13 1104 1671 2239 2807 </td <td>-30</td> <td>1194</td> <td>1806</td> <td>2418</td> <td>3030</td>	-30	1194	1806	2418	3030			
-27 1178 1783 2387 2991 -26 1173 1775 2376 2978 -25 1168 1767 2366 2965 -24 1162 1759 2355 2952 -23 1157 1751 2345 2938 -22 1152 1743 2334 2925 -21 1146 1735 2324 2912 -20 1141 1727 2313 2899 -19 1136 1719 2302 2886 -18 1130 1711 2292 2873 -17 1125 1703 2281 2859 -16 1120 1695 2271 2846 -15 1114 1687 2260 2833 -14 1109 1679 2250 2820 -13 1104 1671 2239 2807 -12 1098 1663 2228 2793 </td <td>-29</td> <td>1189</td> <td>1798</td> <td>2408</td> <td>3017</td>	-29	1189	1798	2408	3017			
-26 1173 1775 2376 2978 -25 1168 1767 2366 2965 -24 1162 1759 2355 2952 -23 1157 1751 2345 2938 -22 1152 1743 2334 2925 -21 1146 1735 2324 2912 -20 1141 1727 2313 2899 -19 1136 1719 2302 2886 -18 1130 1711 2292 2873 -17 1125 1703 2281 2859 -16 1120 1695 2271 2846 -15 1114 1687 2260 2833 -14 1109 1679 2250 2820 -13 1104 1671 2239 2807 -12 1098 1663 2228 2793 -11 1093 1656 2218 2780 </td <td>-28</td> <td>1184</td> <td>1790</td> <td>2397</td> <td>3004</td>	-28	1184	1790	2397	3004			
-25 1168 1767 2366 2965 -24 1162 1759 2355 2952 -23 1157 1751 2345 2938 -22 1152 1743 2334 2925 -21 1146 1735 2324 2912 -20 1141 1727 2313 2899 -19 1136 1719 2302 2886 -18 1130 1711 2292 2873 -17 1125 1703 2281 2859 -16 1120 1695 2271 2846 -15 1114 1687 2260 2833 -14 1109 1679 2250 2820 -13 1104 1671 2239 2807 -12 1098 1663 2228 2793 -11 1093 1656 2218 2780 -10 1088 1648 2207 2767 </td <td>-27</td> <td>1178</td> <td>1783</td> <td>2387</td> <td>2991</td>	-27	1178	1783	2387	2991			
-24 1162 1759 2355 2952 -23 1157 1751 2345 2938 -22 1152 1743 2334 2925 -21 1146 1735 2324 2912 -20 1141 1727 2313 2899 -19 1136 1719 2302 2886 -18 1130 1711 2292 2873 -17 1125 1703 2281 2859 -16 1120 1695 2271 2846 -15 1114 1687 2260 2833 -14 1109 1679 2250 2820 -13 1104 1671 2239 2807 -12 1098 1663 2228 2793 -11 1093 1656 2218 2780 -10 1088 1648 2207 2767 -9 1082 1639 2197 2754 <td>-26</td> <td>1173</td> <td>1775</td> <td>2376</td> <td>2978</td>	-26	1173	1775	2376	2978			
-23 1157 1751 2345 2938 -22 1152 1743 2334 2925 -21 1146 1735 2324 2912 -20 1141 1727 2313 2899 -19 1136 1719 2302 2886 -18 1130 1711 2292 2873 -17 1125 1703 2281 2859 -16 1120 1695 2271 2846 -15 1114 1687 2260 2833 -14 1109 1679 2250 2820 -13 1104 1671 2239 2807 -12 1098 1663 2228 2793 -11 1093 1656 2218 2780 -10 1088 1648 2207 2767 -9 1082 1639 2197 2754 -8 1077 1631 2186 2740 -7 1072 1623 2175 2727 -6	-25	1168	1767	2366	2965			
-22 1152 1743 2334 2925 -21 1146 1735 2324 2912 -20 1141 1727 2313 2899 -19 1136 1719 2302 2886 -18 1130 1711 2292 2873 -17 1125 1703 2281 2859 -16 1120 1695 2271 2846 -15 1114 1687 2260 2833 -14 1109 1679 2250 2820 -13 1104 1671 2239 2807 -12 1098 1663 2228 2793 -11 1093 1656 2218 2780 -10 1088 1648 2207 2767 -9 1082 1639 2197 2754 -8 1077 1631 2186 2740 -7 1072 1623 2175 2727	-24	1162	1759	2355	2952			
-21 1146 1735 2324 2912 -20 1141 1727 2313 2899 -19 1136 1719 2302 2886 -18 1130 1711 2292 2873 -17 1125 1703 2281 2859 -16 1120 1695 2271 2846 -15 1114 1687 2260 2833 -14 1109 1679 2250 2820 -13 1104 1671 2239 2807 -12 1098 1663 2228 2793 -11 1093 1656 2218 2780 -10 1088 1648 2207 2767 -9 1082 1639 2197 2754 -8 1077 1631 2186 2740 -7 1072 1623 2175 2727 -6 1066 1615 2164 2714	-23	1157	1751	2345	2938			
-20 1141 1727 2313 2899 -19 1136 1719 2302 2886 -18 1130 1711 2292 2873 -17 1125 1703 2281 2859 -16 1120 1695 2271 2846 -15 1114 1687 2260 2833 -14 1109 1679 2250 2820 -13 1104 1671 2239 2807 -12 1098 1663 2228 2793 -11 1093 1656 2218 2780 -10 1088 1648 2207 2767 -9 1082 1639 2197 2754 -8 1077 1631 2186 2740 -7 1072 1623 2175 2727 -6 1066 1615 2164 2714 -5 1061 1607 2154 2700	-22	1152	1743	2334	2925			
-19 1136 1719 2302 2886 -18 1130 1711 2292 2873 -17 1125 1703 2281 2859 -16 1120 1695 2271 2846 -15 1114 1687 2260 2833 -14 1109 1679 2250 2820 -13 1104 1671 2239 2807 -12 1098 1663 2228 2793 -11 1093 1656 2218 2780 -10 1088 1648 2207 2767 -9 1082 1639 2197 2754 -8 1077 1631 2186 2740 -7 1072 1623 2175 2727 -6 1066 1615 2164 2714 -5 1061 1607 2154 2700	-21	1146	1735	2324	2912			
-18 1130 1711 2292 2873 -17 1125 1703 2281 2859 -16 1120 1695 2271 2846 -15 1114 1687 2260 2833 -14 1109 1679 2250 2820 -13 1104 1671 2239 2807 -12 1098 1663 2228 2793 -11 1093 1656 2218 2780 -10 1088 1648 2207 2767 -9 1082 1639 2197 2754 -8 1077 1631 2186 2740 -7 1072 1623 2175 2727 -6 1066 1615 2164 2714 -5 1061 1607 2154 2700	-20	1141	1727	2313	2899			
-17 1125 1703 2281 2859 -16 1120 1695 2271 2846 -15 1114 1687 2260 2833 -14 1109 1679 2250 2820 -13 1104 1671 2239 2807 -12 1098 1663 2228 2793 -11 1093 1656 2218 2780 -10 1088 1648 2207 2767 -9 1082 1639 2197 2754 -8 1077 1631 2186 2740 -7 1072 1623 2175 2727 -6 1066 1615 2164 2714 -5 1061 1607 2154 2700	-19	1136	1719	2302	2886			
-16 1120 1695 2271 2846 -15 1114 1687 2260 2833 -14 1109 1679 2250 2820 -13 1104 1671 2239 2807 -12 1098 1663 2228 2793 -11 1093 1656 2218 2780 -10 1088 1648 2207 2767 -9 1082 1639 2197 2754 -8 1077 1631 2186 2740 -7 1072 1623 2175 2727 -6 1066 1615 2164 2714 -5 1061 1607 2154 2700	-18	1130	1711	2292	2873			
-15 1114 1687 2260 2833 -14 1109 1679 2250 2820 -13 1104 1671 2239 2807 -12 1098 1663 2228 2793 -11 1093 1656 2218 2780 -10 1088 1648 2207 2767 -9 1082 1639 2197 2754 -8 1077 1631 2186 2740 -7 1072 1623 2175 2727 -6 1066 1615 2164 2714 -5 1061 1607 2154 2700	-17	1125	1703	2281	2859			
-14 1109 1679 2250 2820 -13 1104 1671 2239 2807 -12 1098 1663 2228 2793 -11 1093 1656 2218 2780 -10 1088 1648 2207 2767 -9 1082 1639 2197 2754 -8 1077 1631 2186 2740 -7 1072 1623 2175 2727 -6 1066 1615 2164 2714 -5 1061 1607 2154 2700	-16	1120	1695	2271	2846			
-13 1104 1671 2239 2807 -12 1098 1663 2228 2793 -11 1093 1656 2218 2780 -10 1088 1648 2207 2767 -9 1082 1639 2197 2754 -8 1077 1631 2186 2740 -7 1072 1623 2175 2727 -6 1066 1615 2164 2714 -5 1061 1607 2154 2700	–15	1114	1687	2260	2833			
-12 1098 1663 2228 2793 -11 1093 1656 2218 2780 -10 1088 1648 2207 2767 -9 1082 1639 2197 2754 -8 1077 1631 2186 2740 -7 1072 1623 2175 2727 -6 1066 1615 2164 2714 -5 1061 1607 2154 2700	-14	1109	1679	2250	2820			
-11 1093 1656 2218 2780 -10 1088 1648 2207 2767 -9 1082 1639 2197 2754 -8 1077 1631 2186 2740 -7 1072 1623 2175 2727 -6 1066 1615 2164 2714 -5 1061 1607 2154 2700	-13	1104	1671	2239	2807			
-10 1088 1648 2207 2767 -9 1082 1639 2197 2754 -8 1077 1631 2186 2740 -7 1072 1623 2175 2727 -6 1066 1615 2164 2714 -5 1061 1607 2154 2700	-12	1098	1663	2228	2793			
-9 1082 1639 2197 2754 -8 1077 1631 2186 2740 -7 1072 1623 2175 2727 -6 1066 1615 2164 2714 -5 1061 1607 2154 2700	-11	1093	1656	2218	2780			
-8 1077 1631 2186 2740 -7 1072 1623 2175 2727 -6 1066 1615 2164 2714 -5 1061 1607 2154 2700	-10	1088	1648	2207	2767			
-7 1072 1623 2175 2727 -6 1066 1615 2164 2714 -5 1061 1607 2154 2700	-9	1082	1639	2197	2754			
-6 1066 1615 2164 2714 -5 1061 1607 2154 2700	-8	1077	1631	2186	2740			
-5 1061 1607 2154 2700	– 7	1072	1623	2175	2727			
	-6	1066	1615	2164	2714			
-4 1055 1599 2143 2687	– 5	1061	1607	2154	2700			
	-4	1055	1599	2143	2687			

Product Folder Links: LM94022 LM94022-Q1

Submit Documentation Feedback

Copyright © 2006–2015, Texas Instruments Incorporated

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.ti.com

LM94022, LM94022-Q1

SNIS140F -MAY 2006-REVISED SEPTEMBER 2015

Table 2. LM94022/LM94022-Q1 Transfer Table (continued)

		134022-Q1 110113		,
TEMPERATURE (°C)	GS = 00 (mV)	GS = 01 (mV)	GS = 10 (mV)	GS = 11 (mV)
-3	1050	1591	2132	2674
-2	1044	1583	2122	2660
-1	1039	1575	2111	2647
0	1034	1567	2100	2633
1	1028	1559	2089	2620
2	1023	1551	2079	2607
3	1017	1543	2068	2593
4	1012	1535	2057	2580
5	1007	1527	2047	2567
6	1001	1519	2036	2553
7	996	1511	2025	2540
8	990	1502	2014	2527
9	985	1494	2004	2513
10	980	1486	1993	2500
11	974	1478	1982	2486
12	969	1470	1971	2473
13	963	1462	1961	2459
14	958	1454	1950	2446
15	952	1446	1939	2433
16	947	1438	1928	2419
17	941	1430	1918	2406
18	936	1421	1907	2392
19	931	1413	1896	2379
20	925	1405	1885	2365
21	920	1397	1874	2352
22	914	1389	1864	2338
23	909	1381	1853	2325
24	903	1373	1842	2311
25	898	1365	1831	2298
26	892	1356	1820	2285
27	887	1348	1810	2271
28	882	1340	1799	2258
29	876	1332	1788	2244
30	871	1324	1777	2231
31	865	1316	1766	2217
32	860	1308	1756	2204
33	854	1299	1745	2190
34	849	1291	1734	2176
35	843	1283	1723	2163
36	838	1275	1712	2149
37	832	1267	1701	2136
38	827	1258	1690	2122
39	821	1250	1679	2108
40	816	1242	1668	2095
41	810	1234	1657	2081
42	804	1225	1646	2067
43	799	1217	1635	2054

Copyright © 2006–2015, Texas Instruments Incorporated

Submit Documentation Feedback

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

LM94022, LM94022-Q1

SNIS140F - MAY 2006-REVISED SEPTEMBER 2015

www.ti.com

Table 2. LM94022/LM94022-Q1 Transfer Table (continued)

Table 2. LW94022/LW94022-Q1 Transfer Table (Continued)											
TEMPERATURE (°C)	GS = 00 (mV)	GS = 01 (mV)	GS = 10 (mV)	GS = 11 (mV)							
44	793	1209	1624	2040							
45	788	1201	1613	2026							
46	782	1192	1602	2012							
47	777	1184	1591	1999							
48	771	1176	1580	1985							
49	766	1167	1569	1971							
50	760	1159	1558	1958							
51	754	1151	1547	1944							
52	749	1143	1536	1930							
53	743	1134	1525	1916							
54	738	1126	1514	1902							
55	732	1118	1503	1888							
56	726	1109	1492	1875							
57	721	1101	1481	1861							
58	715	1093	1470	1847							
59	710	1084	1459	1833							
60	704	1076	1448	1819							
61	698	1067	1436	1805							
62	693	1059	1425	1791							
63	687	1051	1414	1777							
64	681	1042	1403	1763							
65	676	1034	1391	1749							
66	670	1025	1380	1735							
67	664	1017	1369	1721							
68	659	1008	1358	1707							
69	653	1000	1346	1693							
70	647	991	1335	1679							
71	642	983	1324	1665							
72	636	974	1313	1651							
73	630	966	1301	1637							
74	625	957	1290	1623							
75	619	949	1279	1609							
76	613	941	1268	1595							
77	608	932	1257	1581							
78	602	924	1245	1567							
79	596	915	1234	1553							
80	591	907	1223	1539							
81	585	898	1212	1525							
82	579	890	1201	1511							
83	574	881	1189	1497							
84	568	873	1178	1483							
85	562	865	1167	1469							
86	557	856	1155	1455							
87	551	848	1144	1441							
88	545	839	1133	1441							
88		839	1133	1427							
	539										
90	534	822	1110	1399							

Product Folder Links: LM94022 LM94022-Q1

Submit Documentation Feedback

Copyright © 2006–2015, Texas Instruments Incorporated

omation i coabaok

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.ti.com

LM94022, LM94022-Q1

SNIS140F -MAY 2006-REVISED SEPTEMBER 2015

Table 2. LM94022/LM94022-Q1 Transfer Table (continued)

	·		() ()	ole (continued)			
TEMPERATURE (°C)	GS = 00 (mV)	GS = 01 (mV)	GS = 10 (mV)	GS = 11 (mV)			
91	528	814	1099	1385			
92	522	805	1088	1371			
93	517	797	1076	1356			
94	511	788	1065	1342			
95	505	779	1054	1328			
96	499	771	1042	1314			
97	494	762	1031	1300			
98	488	754	1020	1286			
99	482	745	1008	1272			
100	476	737	997	1257			
101	471	728	986	1243			
102	465	720	974	1229			
103	459	711	963	1215			
104	453	702	951	1201			
105	448	694	940	1186			
106	442	685	929	1172			
107	436	677	917	1158			
108	430	668	906	1144			
109	425	660	895	1130			
110	419	651	883	1115			
111	413	642	872	1101			
112	407	634	860	1087			
113	401	625	849	1073			
114	396	617	837	1058			
115	390	608	826	1044			
116	384	599	814	1030			
117	378	591	803	1015			
118	372	582	791	1001			
119	367	573	780	987			
120	361	565	769	973			
121	355	556	757	958			
122	349	547	745	944			
123	343	539	734	929			
124	337	530	722	915			
125	332	521	711	901			
126	326	513	699	886			
127	320	504	688	872			
128	314	495	676	858			
129	308	487	665	843			
130	302	478	653	829			
131	296	469	642	814			
132	291	460	630	800			
133	285	452	618	786			
134	279	443	607	771			
135	273	434	595	757			
136	267	425	584	742			
137	261	416	572	728			

Copyright © 2006–2015, Texas Instruments Incorporated

Submit Documentation Feedback

13

Product Folder Links: LM94022 LM94022-Q1

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

LM94022, LM94022-Q1

SNIS140F-MAY 2006-REVISED SEPTEMBER 2015

www.ti.com

Table 2. LM94022/LM94022-Q1 Transfer Table (continued)

TEMPERATURE (°C)	GS = 00 (mV)	GS = 01 (mV)	GS = 10 (mV)	GS = 11 (mV)
138	255	408	560	713
139	249	399	549	699
140	243	390	537	684
141	237	381	525	670
142	231	372	514	655
143	225	363	502	640
144	219	354	490	626
145	213	346	479	611
146	207	337	467	597
147	201	328	455	582
148	195	319	443	568
149	189	310	432	553
150	183	301	420	538

7.4 Device Functional Modes

7.4.1 Capacitive Loads

The LM94022/-Q1 handles capacitive loading well. In an extremely noisy environment, or when driving a switched sampling input on an ADC, it may be necessary to add some filtering to minimize noise coupling. Without any precautions, the LM94022/-Q1 can drive a capacitive load less than or equal to 1100 pF as shown in Figure 13. For capacitive loads greater than 1100 pF, a series resistor may be required on the output, as shown in Figure 14.

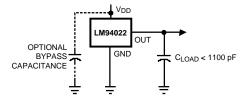


Figure 13. LM94022/-Q1 No Decoupling Required for Capacitive Loads Less than 1100 pF

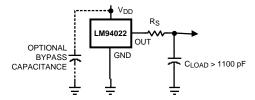


Figure 14. LM94022/-Q1 With Series Resistor for Capacitive Loading Greater than 1100 pF

C _{LOAD}	MINIMUM R _S
1.1 nF to 99 nF	3 kΩ
100 nF to 999 nF	1.5 kΩ
1 μF	800 Ω

Submit Documentation Feedback

Copyright © 2006–2015, Texas Instruments Incorporated

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

LM94022, LM94022-Q1

www.ti.com

SNIS140F -MAY 2006-REVISED SEPTEMBER 2015

7.4.2 Output Voltage Shift

The LM94022/-Q1 is very linear over temperature and supply voltage range. Due to the intrinsic behavior of an NMOS/PMOS rail-to-rail buffer, a slight shift in the output can occur when the supply voltage is ramped over the operating range of the device. The location of the shift is determined by the relative levels of V_{DD} and V_{OUT} . The shift typically occurs when $V_{DD} - V_{OUT} = 1$ V.

This slight shift (a few mV) takes place over a wide change (approximately 200 mV) in V_{DD} or V_{OUT}. Because the shift takes place over a wide temperature change of 5°C to 20°C, V_{OUT} is always monotonic. The accuracy specifications in the *Electrical Characteristics* table already include this possible shift.

7.4.3 Selectable Gain for Optimization and in Situ Testing

The Gain Select digital inputs can be tied to the rails or can be driven from digital outputs such as microcontroller GPIO pins. In low-supply voltage applications, the ability to reduce the gain to -5.5 mV/°C allows the LM94022/-Q1 to operate over the full -50°C to 150°C range. When a larger supply voltage is present, the gain can be increased as high as -13.6 mV/°C. The larger gain is optimal for reducing the effects of noise (for example, noise coupling on the output line or quantization noise induced by an analog-to-digital converter which may be sampling the LM94022/-Q1 output).

Another application advantage of the digitally selectable gain is the ability to perform dynamic testing of the LM94022/-Q1 while it is running in a system. By toggling the logic levels of the gain select pins and monitoring the resultant change in the output voltage level, the host system can verify the functionality of the LM94022/-Q1.

Product Folder Links: LM94022 LM94022-Q1

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

LM94022, LM94022-Q1

SNIS140F-MAY 2006-REVISED SEPTEMBER 2015

www.ti.com

(2)

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LM94022/-Q1 features make it suitable for many general temperature sensing applications. It can operate over a supply range of 1.5 V to 5.5 V with programmable output slope and a wide –50°C to +150°C temperature range, thus allowing flexibility for different temperature and supply voltage range combinations.

8.1.1 LM94022 Transfer Function

The LM94022 has four selectable gains, each of which can be selected by the GS1 and GS0 input pins. The output voltage for each gain, across the complete operating temperature range is shown in Table 2. This table is the reference from which the LM94022 accuracy specifications (listed in the *Electrical Characteristics* section) are determined.

Although the LM94022 transfer curves are very linear, they do have a slight umbrella parabolic shape. This shape is very accurately reflected in Table 2. The transfer table was used to calculate the following equations.

$$J2,G00: V_{TEMP}(mV) = 870.6mV - 5.506 \frac{mV}{^{\circ}C} (T - 30^{\circ}C) - 0.00176 \frac{mV}{^{\circ}C^{2}} (T - 30^{\circ}C)^{2}$$

$$J3,G01: V_{TEMP}(mV) = 1324.0mV - 8.194 \frac{mV}{^{\circ}C} (T - 30^{\circ}C) - 0.00262 \frac{mV}{^{\circ}C^{2}} (T - 30^{\circ}C)^{2}$$

$$J4,G10: V_{TEMP}(mV) = 1777.3mV - 10.888 \frac{mV}{^{\circ}C} (T - 30^{\circ}C) - 0.00347 \frac{mV}{^{\circ}C^{2}} (T - 30^{\circ}C)^{2}$$

$$J5,G11: V_{TEMP}(mV) = 2230.8mV - 13.582 \frac{mV}{^{\circ}C} (T - 30^{\circ}C) - 0.00433 \frac{mV}{^{\circ}C^{2}} (T - 30^{\circ}C)^{2}$$

$$(1)$$

A linear approximation can be useful over a narrow temperature range. A line can easily be calculated over the desired temperature range from the table using the two-point equation:

$$V - V_1 = \left(\frac{V_2 - V_1}{T_2 - T_1}\right) \times (T - T_1)$$

where

- V is in mV,
- T is in °C,
- T₁ and V₁ are the coordinates of the lowest temperature,
- T₂ and V₂ are the coordinates of the highest temperature.

For example, to determine the equation of a line with the Gain Setting at GS1 = 0 and GS0 = 0, over a temperature range of 20°C to 50°C, proceed as follows:

$$V - 925 \text{ mV} = \left(\frac{760 \text{ mV} - 925 \text{ mV}}{50^{\circ}\text{C} - 20^{\circ}\text{C}}\right) \times (\text{T} - 20^{\circ}\text{C})$$
(3)

$$V - 925 \text{ mV} = (-5.50 \text{ mV} / {}^{\circ}\text{C}) \times (\text{T} - 20{}^{\circ}\text{C})$$
(4)

$$V = (-5.50 \text{ mV} / {}^{\circ}\text{C}) \times \text{ T} + 1035 \text{ mV}$$
 (5)

Using this method of linear approximation, the transfer function can be approximated for one or more temperature ranges of interest. The accuracy will suffer slightly in favor of easy conversion of the output voltage to temperature.

Submit Documentation Feedback

Copyright © 2006–2015, Texas Instruments Incorporated

www.ti.com

LM94022, LM94022-Q1

SNIS140F - MAY 2006-REVISED SEPTEMBER 2015

8.2 Typical Application

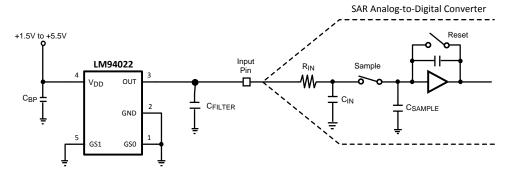


Figure 15. Suggested Connection to a Sampling Analog-to-Digital Converter Input Stage

8.2.1 Design Requirements

Most CMOS ADCs found in microcontrollers and ASICs have a sampled data comparator input structure. When the ADC charges the sampling cap, it requires instantaneous charge from the output of the analog source such as the LM94022/-Q1 temperature sensor and many op amps. This requirement is easily accommodated by the addition of a capacitor C_{FILTER}).

8.2.2 Detailed Design Procedure

The size of C_{FILTER} depends on the size of the sampling capacitor and the sampling frequency. Since not all ADCs have identical input stages, the charge requirements will vary. This general ADC application is shown as an example only.

8.2.3 Application Curve

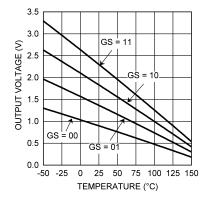


Figure 16. Programmable Analog Output Transfer Function

Copyright © 2006–2015, Texas Instruments Incorporated

Submit Documentation Feedback

LM94022, LM94022-Q1

SNIS140F-MAY 2006-REVISED SEPTEMBER 2015

www.ti.com

8.3 System Examples

8.3.1 Application Circuits

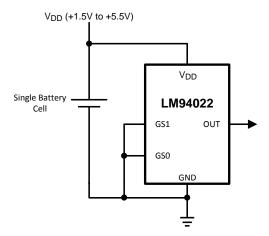


Figure 17. Full-Range Celsius Temperature Sensor (-50°C to +150°C) Operating from a Single Battery

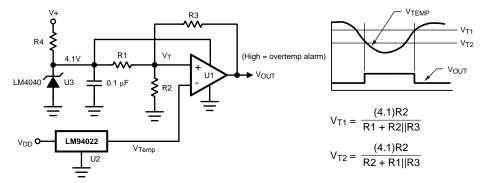


Figure 18. Celsius Thermostat

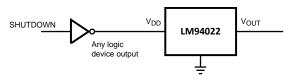


Figure 19. Conserving Power Dissipation With Shutdown

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

LM94022, LM94022-Q1

www.ti.com

SNIS140F -MAY 2006-REVISED SEPTEMBER 2015

9 Power Supply Recommendations

The LM94022/-Q1 low supply current and supply range of 1.5 V to 5.5 V allow the device to easily be powered from many sources.

Power supply bypassing is optional and is mainly dependent on the noise on the power supply. In noisy systems it may be necessary to add bypass capacitors to the lower the noise that couples to the output of the LM94022/-Q1.

10 Layout

10.1 Layout Guidelines

10.1.1 Mounting and Thermal Conductivity

The LM94022/-Q1 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface.

To ensure good thermal conductivity, the backside of the LM94022/-Q1 die is directly attached to the GND pin (Pin 2). The temperatures of the lands and traces to the other leads of the LM94022/-Q1 will also affect the temperature reading.

Alternatively, the LM94022/-Q1 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM94022/-Q1 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. If moisture creates a short circuit from the output to ground or V_{DD}, the output from the LM94022/-Q1 will not be correct. Printed-circuit coatings are often used to ensure that moisture cannot corrode the leads or circuit traces.

The thermal resistance junction to ambient (θ_{JA}) is the parameter used to calculate the rise of a device junction temperature due to its power dissipation. The equation used to calculate the rise in the die temperature of the LM94022/-Q1 is:

$$T_{J} = T_{A} + \theta_{JA} \left[(V_{DD}I_{Q}) + (V_{DD} - V_{O}) I_{L} \right]$$

where

- T_A is the ambient temperature,
- I_O is the quiescent current,
- I₁ is the load current on the output,
- and V_O is the output voltage.

Copyright © 2006–2015. Texas Instruments Incorporated

For example, in an application where $T_A = 30$ °C, $V_{DD} = 5$ V, $I_{DD} = 9$ μA , Gain Select = 11, $V_{OUT} = 2.231$ mV, and $I_L = 2$ μA , the junction temperature would be 30.021 °C, showing a self-heating error of only 0.021°C. Because the junction temperature of the LM94022 is the actual temperature being measured, take care to minimize the load current that the LM94022/-Q1 is required to drive. Table 3 shows the thermal resistance of the LM94022/-Q1.

Table 3. LM94022/LM94022-Q1 Thermal Resistance

DEVICE NUMBER	NS PACKAGE NUMBER	THERMAL RESISTANCE (θ_{JA})		
LM94022BIMG	DCK0005A	415°C/W		

Product Folder Links: LM94022 LM94022-Q1

(6)

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

LM94022, LM94022-Q1

SNIS140F-MAY 2006-REVISED SEPTEMBER 2015

www.ti.com

10.2 Layout Example

The LM94022/-Q1 is extremely simple to layout electrically. If a power supply bypass capacitor is used it should be connected as shown in Figure 20. The device pins and layout greatly influence the temperature that the LM94022/-Q1 die is measuring thus thermal modeling is recommended to ensure that the device is sensing the proper temperature.

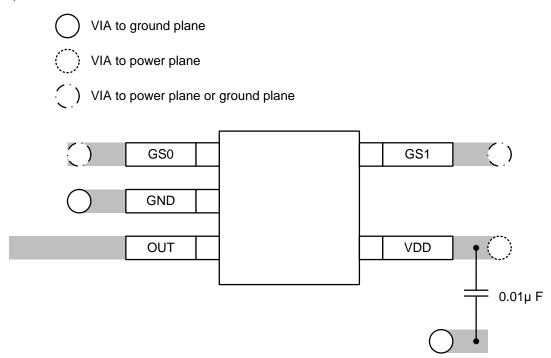


Figure 20. Recommended Layout

10.3 Output and Noise Considerations

A push-pull output gives the LM94022/-Q1 the ability to sink and source significant current. This is beneficial when, for example, driving dynamic loads like an input stage on an analog-to-digital converter (ADC). In these applications the source current is required to quickly charge the input capacitor of the ADC. See the Application Circuits section for more discussion of this topic. The LM94022/-Q1 is ideal for this and other applications which require strong source or sink current.

The supply-noise gain of the LM94022 (the ratio of the AC signal on V_{OUT} to the AC signal on V_{DD}) was measured during bench tests. It is typical attenuation is shown in the Typical Characteristics section. A load capacitor on the output can help to filter noise.

For operation in very noisy environments, some bypass capacitance should be present on the supply within approximately 2 inches of the LM94022/-Q1.

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

LM94022, LM94022-Q1

SNIS140F - MAY 2006-REVISED SEPTEMBER 2015

www.ti.com

11 Device and Documentation Support

11.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 4. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
LM94022	Click here	Click here	Click here	Click here	Click here
LM94022-Q1	Click here	Click here	Click here	Click here	Click here

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2006–2015, Texas Instruments Incorporated

Product Folder Links: LM94022 LM94022-Q1

Submit Documentation Feedback

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

20-May-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LM94022BIMG	NRND	SC70	DCK	5	1000	TBD	Call TI	Call TI	-50 to 150	22B	
LM94022BIMG/NOPB	ACTIVE	SC70	DCK	5	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-50 to 150	22B	Samples
LM94022BIMGX/NOPB	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-50 to 150	22B	Samples
LM94022QBIMG/NOPB	ACTIVE	SC70	DCK	5	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-50 to 150	22Q	Samples
LM94022QBIMGX/NOPB	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-50 to 150	22Q	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): Ti's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width

Addendum-Page 1

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5

PACKAGE OPTION ADDENDUM

www.ti.com 20-May-2015

Important Information and Disclaimer: The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. Tl bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Tl has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. Tl and Tl suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

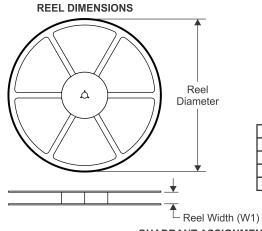
OTHER QUALIFIED VERSIONS OF LM94022, LM94022-Q1:

- Automotive: LM94022-Q1

NOTE: Qualified Version Definitions:

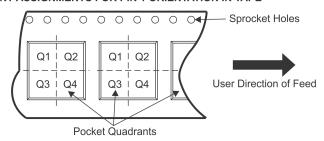
- . Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects

Addendum-Page 2


Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE MATERIALS INFORMATION

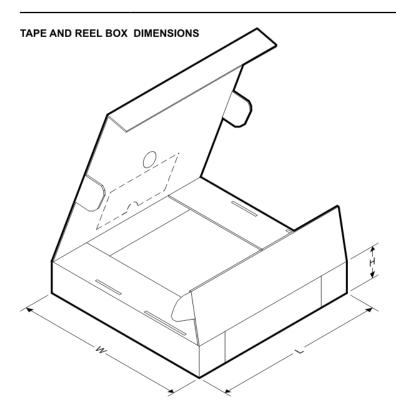
www.ti.com 20-May-2015


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

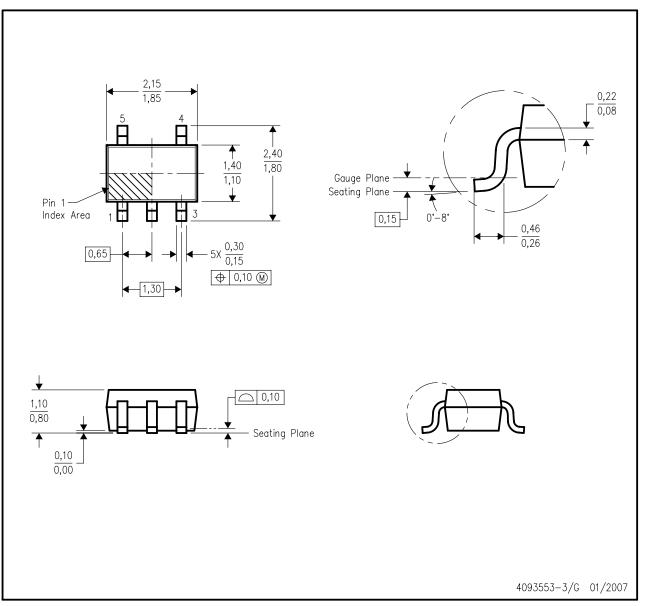

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM94022BIMG	SC70	DCK	5	1000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LM94022BIMG/NOPB	SC70	DCK	5	1000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LM94022BIMGX/NOPB	SC70	DCK	5	3000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LM94022QBIMG/NOPB	SC70	DCK	5	1000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
LM94022QBIMGX/NOPB	SC70	DCK	5	3000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3

Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE MATERIALS INFORMATION

www.ti.com 20-May-2015

*All dimensions are nominal


7 til dilliciololio ale fiorillia							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM94022BIMG	SC70	DCK	5	1000	210.0	185.0	35.0
LM94022BIMG/NOPB	SC70	DCK	5	1000	210.0	185.0	35.0
LM94022BIMGX/NOPB	SC70	DCK	5	3000	210.0	185.0	35.0
LM94022QBIMG/NOPB	SC70	DCK	5	1000	210.0	185.0	35.0
LM94022QBIMGX/NOPB	SC70	DCK	5	3000	210.0	185.0	35.0

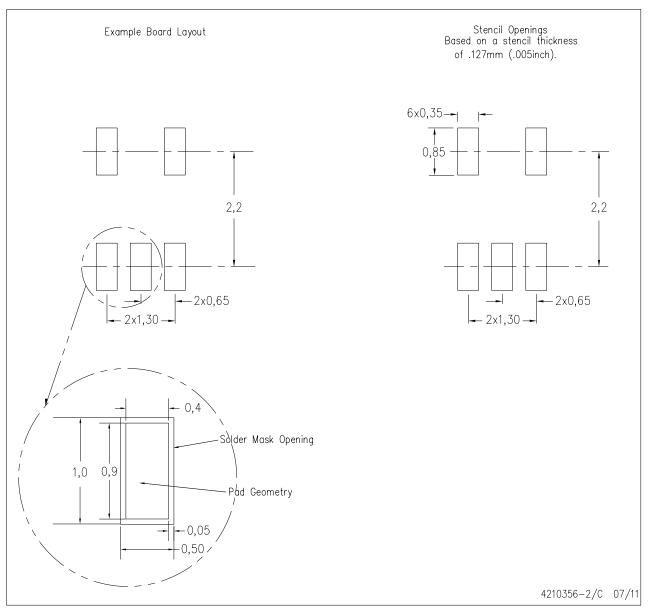
MECHANICAL DATA

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.



LAND PATTERN DATA

DCK (R-PDSO-G5)

PLASTIC SMALL OUTLINE

NOTES:

- . All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of LM94022BIMG/NOPB - SENSOR TEMP RATIOMETRIC SC70-5

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Applications

Products Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals **Data Converters** dataconverter.ti.com www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Security www.ti.com/security Logic logic.ti.com

Power Mgmt Space, Avionics and Defense www.ti.com/space-avionics-defense power.ti.com

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors TI E2E Community www.ti.com/omap e2e.ti.com

www.ti.com/wirelessconnectivity Wireless Connectivity

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated