

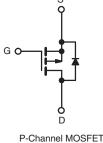
Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Vishay/Siliconix IRF9Z30PBF

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>


IRF9Z30, SiHF9Z30

Vishay Siliconix

Power MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	- {	50		
R _{DS(on)} (Ω)	V _{GS} = - 10 V	0.14		
Q _g (Max.) (nC)	3	9		
Q _{gs} (nC)	1	0		
Q _{gd} (nC)	1	5		
Configuration	Sin	igle		

FEATURES

- P-Channel Versatility
- Compact Plastic Package
- · Fast Switching
- Low Drive Current
- · Ease of Paralleling
- Excellent Temperature Stability
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

Note

Lead (Pb)-containing terminations are not RoHS-compliant. Exemptions may apply.

DESCRIPTION

The power MOSFET technology is the key to Vishay's advanced line of power MOSFET transistors. The efficient geometry and unique processing of the power MOSFET design achieve very low on-state resistance combined with high transconductance and extreme device ruggedness.

The p-channel power MOSFET's are designed for application which require the convenience of reverse polarity operation. They retain all of the features of the more common n-channel Power MOSFET's such as voltage control, very fast switching, ease of paralleling, and excellent temperature stability.

P-channel power MOSFETs are intended for use in power stages where complementary symmetry with n-channel devices offers circuit simplification. They are also very useful in drive stages because of the circuit versatility offered by the reverse polarity connection. Applications include motor control, audio amplifiers, switched mode converters, control circuits and pulse amplifiers.

ORDERING INFORMATION	
Package	TO-220AB
Lead (Pb)-free	IRF9Z30PbF
Lead (PD)-free	SiHF9Z30-E3
SnPb	IRF9Z30
	SiHF9Z30

ABSOLUTE MAXIMUM RATINGS (T _C	= 25 °C, unl	ess otherwis	se noted)		
PARAMETER			SYMBOL	LIMIT	UNIT
Drain-Source Voltage			V _{DS}	- 50	v
Gate-Source Voltage			V _{GS}	± 20	v
Continuous Drain Current	V _{GS} at - 10 V	T _C = 25 °C	1	- 18	
	V _{GS} at - 10 V	$T_C = 100 \ ^\circ C$	ID	- 11	А
Pulsed Drain Current ^a			I _{DM}	- 60	
Linear Derating Factor				0.59	W/°C
Inductive Current, Clamped	L = 1	00 μH	I _{LM}	- 60	А
Unclamped Inductive Current (Avalanche Current)			١ _L	- 3.1	А
Maximum Power Dissipation	T _C =	25 °C	PD	74	W
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to + 150	°C	
Soldering Recommendations (Peak Temperature)	for	10 s	-	300 ^c	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 14). b. V_{DD} = - 25 V, starting T_J = 25 °C, L =100 µH, R_g = 25 Ω c. 0.063" (1.6 mm) from case.

S12-3048-Rev. A, 24-Dec-12

Document Number: 91459

For technical questions, contact: <u>hvm@vishay.com</u>

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

COMPLIANT

IRF9Z30, SiHF9Z30

Vishay Siliconix

THERMAL RESISTANCE RATII	NGS							
PARAMETER	SYMBOL	TYP.		MAX.			UNIT	
Maximum Junction-to-Ambient	R _{thJA}	- 80				°C/W		
Maximum Junction-to-Case (Drain)	R _{thJC}	-		1.7			0/10	
SPECIFICATIONS (T _J = 25 °C, u	nless otherwis	se noted)						
PARAMETER	SYMBOL	1	T CONDIT	IONS	MIN.	TYP.	MAX.	UNIT
Static								
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} =	0 V, I _D = -	250 µA	- 50	-	-	V
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	V_{GS} , $I_D = -$	250 µA	- 2.0	-	- 4.0	V
Gate-Source Leakage	I _{GSS}	,	$V_{\rm GS} = \pm 20$	V	-	-	± 500	nA
		V _{DS} = m	ax. rating,	V _{GS} = 0 V	-	-	- 250	
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} = max. rating x 0.8, V_{GS} = 0 V, T _J =125 °C		-	-	- 1000	μA	
Drain-Source On-State Resistance	R _{DS(on)}	V_{GS} = - 10 V	I _D =	- 9.3 A ^b	-	0.093	0.14	Ω
Forward Transconductance	9 _{fs}	$V_{DS} = 2 \times V_{GS}$, $I_{DS} = -9 \text{ A}^{b}$		3.1	4.7	-	S	
Dynamic		-				•	•	
Input Capacitance	C _{iss}		$V_{GS} = 0 V$		-	900	-	
Output Capacitance	C _{oss}	V _{DS} = - 25 V, f = 1.0 MHz, see fig. 9		-	570	-	pF	
Reverse Transfer Capacitance	C _{rss}			-	140	-		
Total Gate Charge	Qg				-	26	39	
Gate-Source Charge	Q _{gs}	$V_{GS} = -10 V$	V _{GS} = - 10 V I _D = - 18 A, V _{DS} = - 0.8 max. rating. see fig. 17		-	6.9	10	nC
Gate-Drain Charge	Q _{gd}				-	9.7	15	
Turn-On Delay Time	t _{d(on)}	V _{DD} =	V _{DD} = - 25 V, I _D = - 18 A,		-	12	18	
Rise Time	t _r			2, see fig. 16 times are	-	110	170	ns
Turn-Off Delay Time	t _{d(off)}	``		t of operating	-	21	32	
Fall Time	t _f	ł	temperature)		-	64	96	
Drain-Source Body Diode Characteristic	s							
Continuous Source-Drain Diode Current	I _S	MOSFET syr showing the	MOSFET symbol showing the		-	-	- 18	
Pulsed Diode Forward Current ^a	I _{SM}	integral reve p - n junction			-	-	- 60	A
Body Diode Voltage	V _{SD}	T _J = 25 °C,	I _S = - 18 A	A, V _{GS} = 0 V ^b	-	-	- 6.3	V
Body Diode Reverse Recovery Time	t _{rr}		10 4 -11	/dt 100 / (b	54	120	250	ns
Body Diode Reverse Recovery Charge	Q _{rr}	$T_J = 25 \text{ °C}, I_F = -18 \text{ A}, dI/dt = 100 \text{ A}/\mu\text{s}^b$		0.20	0.47	1.1	μC	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 14).

b. Pulse width \leq 300 µs; duty cycle \leq 2 %.

Distributor of Vishay/Siliconix: Excellent Integrated System Limited Datasheet of IRF9Z30PBF - MOSFET P-CH 50V 18A TO-220AB Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.vishay.com

IRF9Z30, SiHF9Z30

Vishay Siliconix

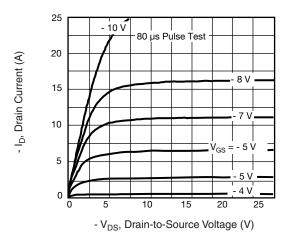


Fig. 1 - Typical Output Characteristics

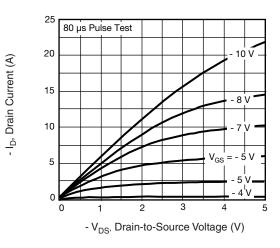


Fig. 3 - Typical Saturation Characteristics

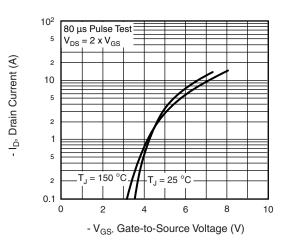


Fig. 2 - Typical Transfer Characteristics

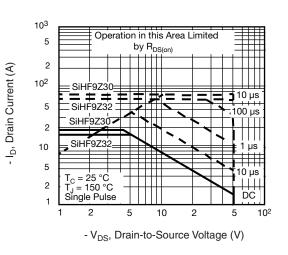


Fig. 4 - Maximum Safe Operating Area

Document Number: 91459

Distributor of Vishay/Siliconix: Excellent Integrated System Limited Datasheet of IRF9Z30PBF - MOSFET P-CH 50V 18A TO-220AB Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.vishay.com

IRF9Z30, SiHF9Z30

Vishay Siliconix

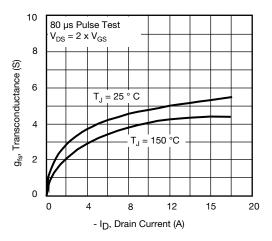
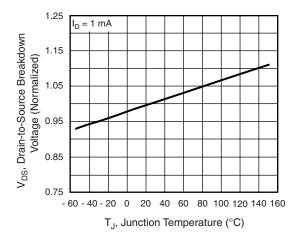



Fig. 5 - Typical Transconductance vs. Drain Current

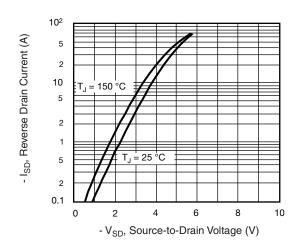


Fig. 6 - Typical Source-Drain Diode Forward Voltage

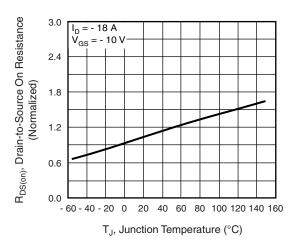


Fig. 8 - Normalized On-Resistance vs. Temperature

4

Distributor of Vishay/Siliconix: Excellent Integrated System Limited Datasheet of IRF9Z30PBF - MOSFET P-CH 50V 18A TO-220AB Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.vishay.com

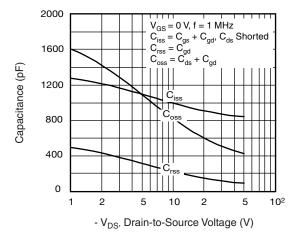


Fig. 9 - Typical Capacitance vs. Drain-to-Source Voltage

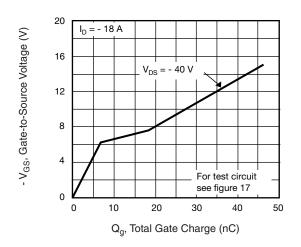


Fig. 10 - Typical Gate Charge vs. Gate-to-Source Voltage

S12-3048-Rev. A, 24-Dec-12

2.0 80 µs Pulse Test R_{DS(on)}, Drain to Source on Resistance 1.6 1.2 V_{GS} = - 10 V 0.8 0.4 $V_{GS} = -20 V$ 0.0 48 0 12 24 36 60 - I_D, Drain Current (A)

Fig. 11 - Typical On-Resistance vs. Drain Current

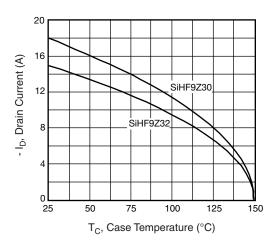


Fig. 12 - Maximum Drain Current vs. Case Temperature

Vishay Siliconix

5

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Document Number: 91459

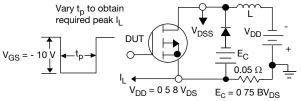


Fig. 13a - Unclamped Inductive Test Circuit

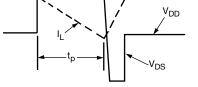


Fig. 13b - Unclamped Inductive Load Test Waveforms

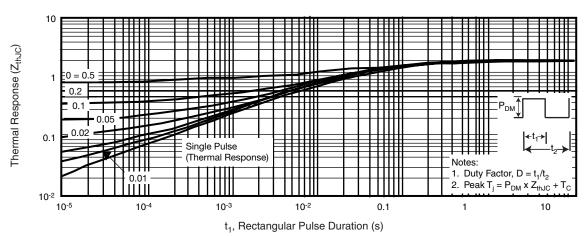


Fig. 14 - Maximum Effective Transient Thermal Impedance, Junction-to-Case vs. Pulse Duration

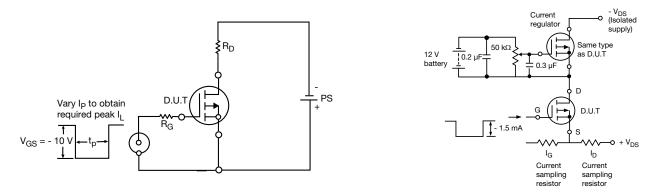
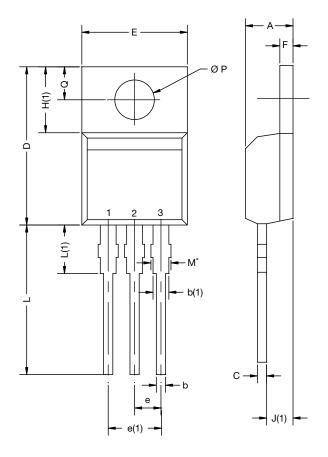


Fig. 15 - Switching Time Test Circuit

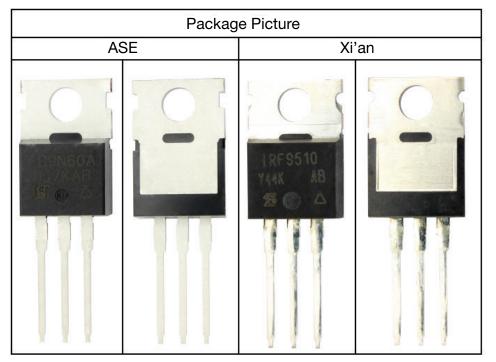
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see <u>www.vishay.com/ppg?91459</u>.

S12-3048-Rev. A, 24-Dec-12	6	Document Number: 91459
	For technical questions, contact: <u>hvm@vishay.com</u>	
	HANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBI 9 SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.</u>	



Package Information

Vishay Siliconix


TO-220-1

	MILLIN	IETERS	INCHES		
DIM.	MIN.	MAX.	MIN.	MAX.	
А	4.24	4.65	0.167	0.183	
b	0.69	1.02	0.027	0.040	
b(1)	1.14	1.78	0.045	0.070	
С	0.36	0.61	0.014	0.024	
D	14.33	15.85	0.564	0.624	
Е	9.96	10.52	0.392	0.414	
е	2.41	2.67	0.095	0.105	
e(1)	4.88	5.28	0.192	0.208	
F	1.14	1.40	0.045	0.055	
H(1)	6.10	6.71	0.240	0.264	
J(1)	2.41	2.92	0.095	0.115	
L	13.36	14.40	0.526	0.567	
L(1)	3.33	4.04	0.131	0.159	
ØР	3.53	3.94	0.139	0.155	
Q	2.54	3.00	0.100	0.118	
ECN: X15- DWG: 603	0364-Rev. C, 1	14-Dec-15			

Note

- M^{\star} = 0.052 inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM

Revison: 14-Dec-15

1 For technical questions, contact: <u>hvm@vishay.com</u>

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.