

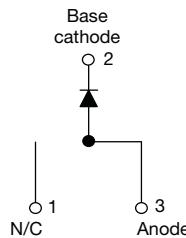
Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[Vishay Semiconductor/Diodes Division](#)
[VS-8TQ100SPBF](#)

For any questions, you can email us directly:


sales@integrated-circuit.com

High Performance Schottky Rectifier, 8 A

TO-263AB (D²PAK)

PRODUCT SUMMARY

Package	TO-263AB (D ² PAK)
$I_{F(AV)}$	8 A
V_R	80 V, 100 V
V_F at I_F	0.72 V
I_{RM} max.	7 mA at 125 °C
T_J max.	175 °C
Diode variation	Single die
E_{AS}	7.5 mJ

FEATURES

- 175 °C T_J operation
- Low forward voltage drop
- High frequency operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- AEC-Q101 qualified
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

RoHS
COMPLIANT
HALOGEN
FREE

DESCRIPTION

The VS-8TQ... Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS

SYMBOL	CHARACTERISTICS	VALUES	UNITS
$I_{F(AV)}$	Rectangular waveform	8	A
V_{RRM}	Range	80, 100	V
I_{FSM}	$t_p = 5 \mu s$ sine	850	A
V_F	8 A _{pk} , $T_J = 125$ °C	0.58	V
T_J	Range	-55 to +175	°C

VOLTAGE RATINGS

PARAMETER	SYMBOL	VS-8TQ080SPbF	VS-8TQ100SPbF	UNITS
Maximum DC reverse voltage	V_R	80	100	V
Maximum working peak reverse voltage	V_{RWM}			

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum average forward current See fig. 5	$I_{F(AV)}$	50 % duty cycle at $T_C = 157$ °C, rectangular waveform	8	A
Maximum peak one cycle non-repetitive surge current See fig. 7	I_{FSM}	5 μs sine or 3 μs rect. pulse	850	A
		10 ms sine or 6 ms rect. pulse		
Non-repetitive avalanche energy	E_{AS}	$T_J = 25$ °C, $I_{AS} = 0.50$ A, $L = 60$ mH	7.50	mJ
Repetitive avalanche current	I_{AR}	Current decaying linearly to zero in 1 μs Frequency limited by T_J maximum $V_A = 1.5 \times V_R$ typical	0.50	A

www.vishay.com

VS-8TQ080SPbF, VS-8TQ100SPbF

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum forward voltage drop See fig. 1	$V_{FM}^{(1)}$	8 A	$T_J = 25 \text{ }^\circ\text{C}$	0.72	
		16 A		0.88	
		8 A	$T_J = 125 \text{ }^\circ\text{C}$	0.58	
		16 A		0.69	
Maximum reverse leakage current See fig. 2	$I_{RM} (1)$	$T_J = 25 \text{ }^\circ\text{C}$	$V_R = \text{Rated } V_R$	0.55	
		$T_J = 125 \text{ }^\circ\text{C}$		7	
Maximum junction capacitance	C_T	$V_R = 5 \text{ V}_{DC}$ (test signal range 100 kHz to 1 MHz), $25 \text{ }^\circ\text{C}$		500	
Typical series inductance	L_S	Measured lead to lead 5 mm from package body		8	
Maximum voltage rate of change	dV/dt	Rated V_R		10 000	
				$\text{V}/\mu\text{s}$	

Note

(1) Pulse width < 300 μs , duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction and storage temperature range	T_J, T_{Stg}		-55 to +175	$^\circ\text{C}$	
Maximum thermal resistance, junction to case	R_{thJC}	DC operation See fig. 4	2.0	$^\circ\text{C}/\text{W}$	
Typical thermal resistance, case to heatsink	R_{thCS}	Mounting surface, smooth and greased	0.50		
Approximate weight			2	g	
			0.07	oz.	
Mounting torque	minimum		6 (5)	$\text{kgf} \cdot \text{cm}$ (lbf · in)	
	maximum		12 (10)		
Marking device		Case style D ² PAK	8TQ080S		
			8TQ100S		

VS-8TQ080SPbF, VS-8TQ100SPbF

Vishay Semiconductors

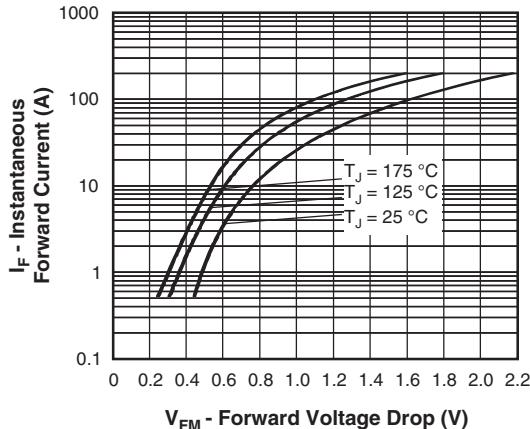


Fig. 1 - Maximum Forward Voltage Drop Characteristics

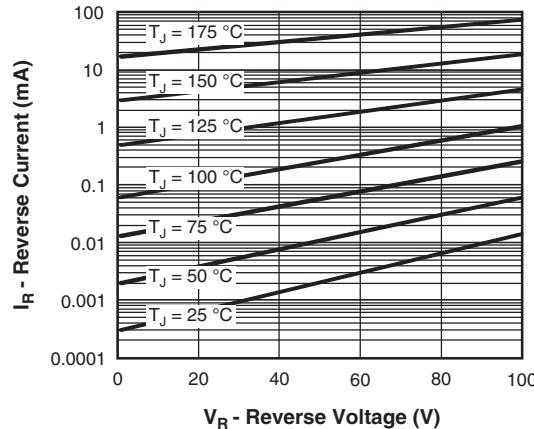


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

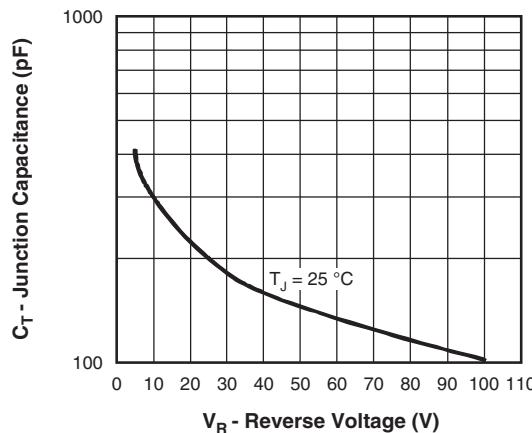


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

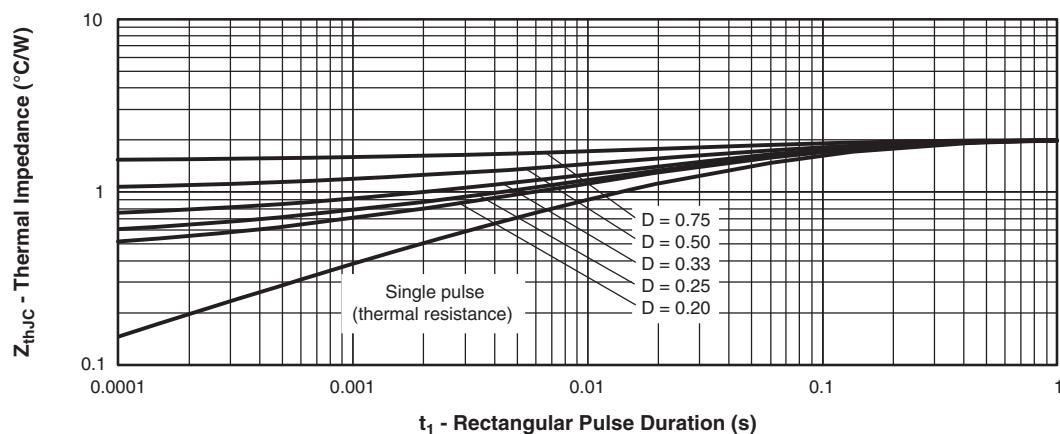


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

VS-8TQ080SPbF, VS-8TQ100SPbF

Vishay Semiconductors

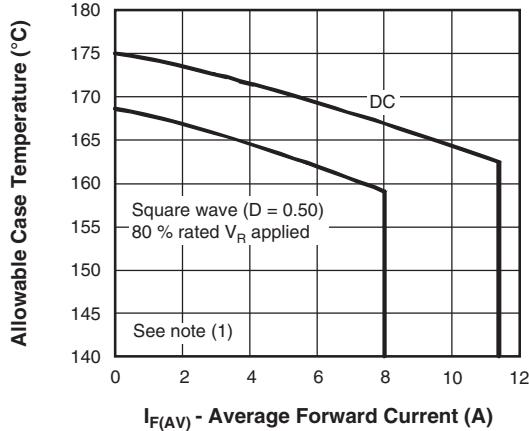


Fig. 5 - Maximum Allowable Case Temperature vs.
Average Forward Current

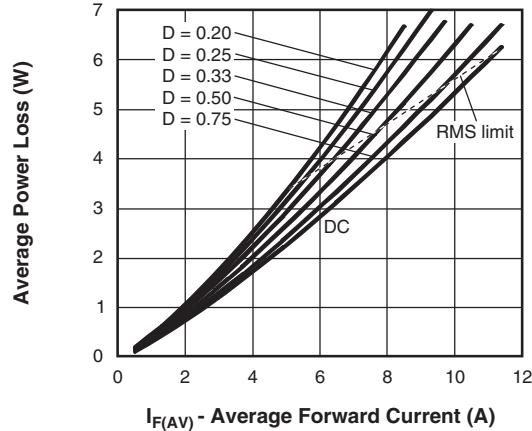


Fig. 6 - Forward Power Loss Characteristics

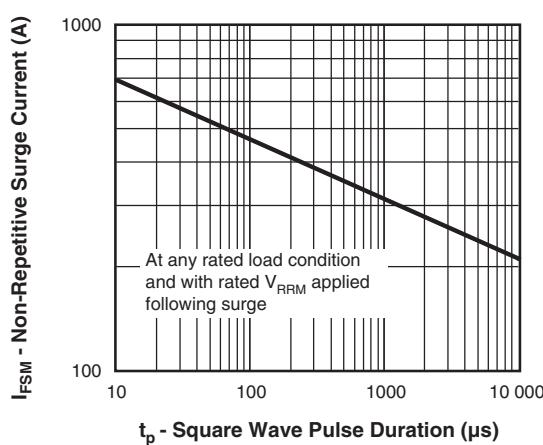


Fig. 7 - Maximum Non-Repetitive Surge Current

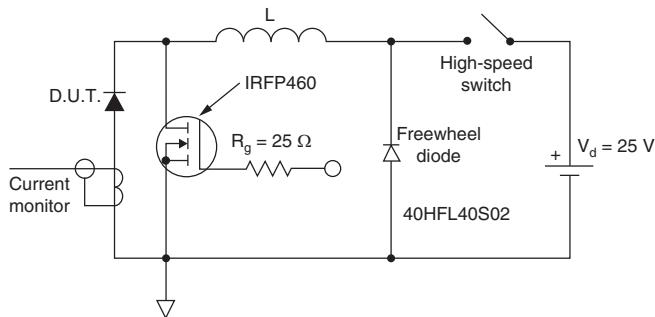


Fig. 8 - Unclamped Inductive Test Circuit

Note

(1) Formula used: $T_C = T_J - (P_d + P_{dREV}) \times R_{thJC}$:
 $P_d = \text{Forward power loss} = I_{F(AV)} \times V_{FM}$ at $(I_{F(AV)}/D)$ (see fig. 6);
 $P_{dREV} = \text{Inverse power loss} = V_{R1} \times I_R (1 - D)$; I_R at $V_{R1} = 80\%$ rated V_R

www.vishay.com

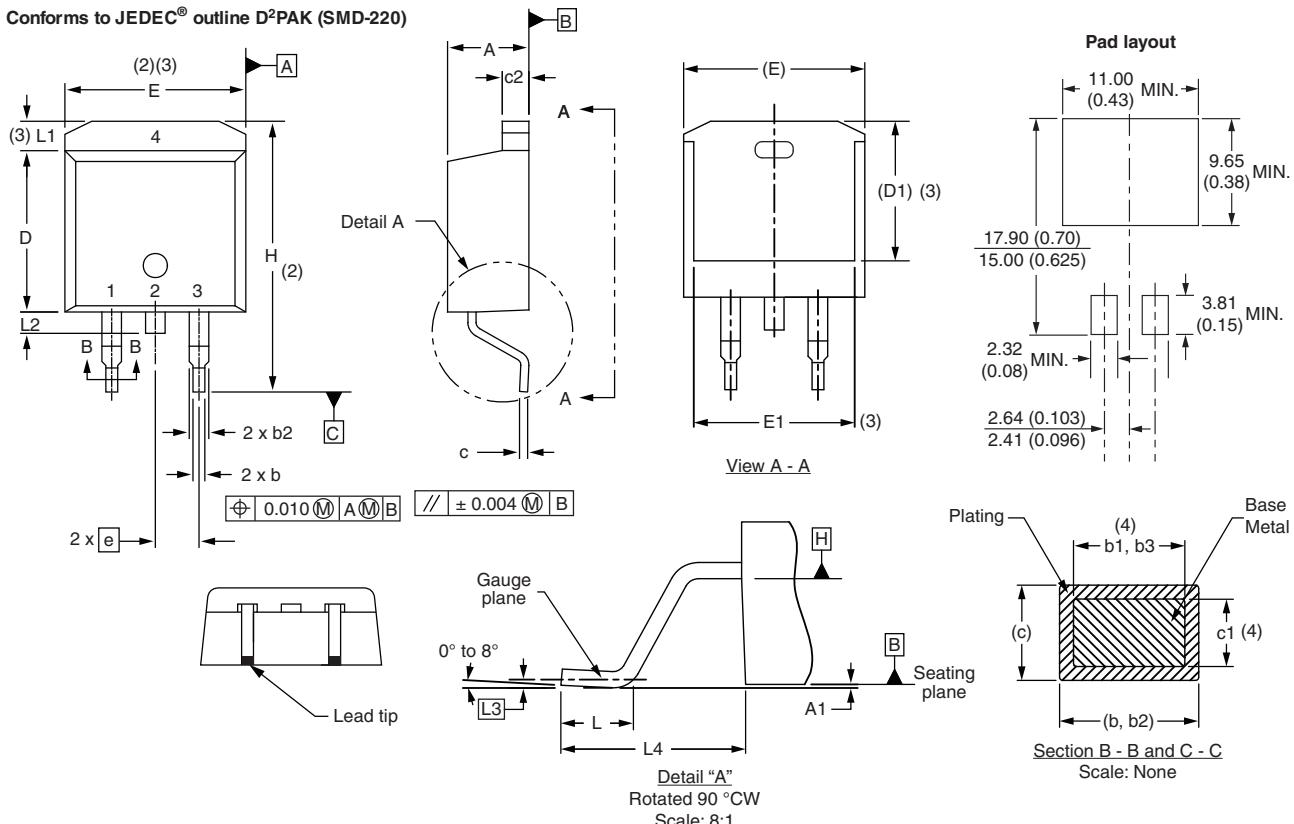
VS-8TQ080SPbF, VS-8TQ100SPbF

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code	VS-	8	T	Q	100	S	TRL	PbF
	1	2	3	4	5	6	7	8
1	- Vishay Semiconductors product							
2	- Current rating (8 A)							
3	- Circuit configuration: T = TO-220							
4	- Schottky "Q" series							
5	- Voltage ratings							
6	080 = 80 V 100 = 100 V							
7	<ul style="list-style-type: none"> - None = tube (50 pieces) - TRL = tape and reel (left oriented) - TRR = tape and reel (right oriented) 							
8	- PbF = lead (Pb)-free							

LINKS TO RELATED DOCUMENTS	
Dimensions	www.vishay.com/doc?95046
Part marking information	www.vishay.com/doc?95054
Packaging information	www.vishay.com/doc?95032
SPICE models	www.vishay.com/doc?95291


Outline Dimensions

Vishay Semiconductors

D²PAK

DIMENSIONS in millimeters and inches

Conforms to JEDEC® outline D²PAK (SMD-220)

SYMBOL	MILLIMETERS		INCHES		NOTES		SYMBOL	MILLIMETERS		INCHES		NOTES
	MIN.	MAX.	MIN.	MAX.				MIN.	MAX.	MIN.	MAX.	
A	4.06	4.83	0.160	0.190			D1	6.86	8.00	0.270	0.315	3
A1	0.00	0.254	0.000	0.010			E	9.65	10.67	0.380	0.420	2, 3
b	0.51	0.99	0.020	0.039			E1	7.90	8.80	0.311	0.346	3
b1	0.51	0.89	0.020	0.035	4		e	2.54 BSC		0.100 BSC		
b2	1.14	1.78	0.045	0.070			H	14.61	15.88	0.575	0.625	
b3	1.14	1.73	0.045	0.068	4		L	1.78	2.79	0.070	0.110	
c	0.38	0.74	0.015	0.029			L1	-	1.65	-	0.066	3
c1	0.38	0.58	0.015	0.023	4		L2	1.27	1.78	0.050	0.070	
c2	1.14	1.65	0.045	0.065			L3	0.25 BSC		0.010 BSC		
D	8.51	9.65	0.335	0.380	2		L4	4.78	5.28	0.188	0.208	

Notes

- (1) Dimensioning and tolerancing per ASME Y14.5 M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- (3) Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Datum A and B to be determined at datum plane H
- (6) Controlling dimension: inch
- (7) Outline conforms to JEDEC® outline TO-263AB

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.