

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[Texas Instruments](#)

[SN74AVC32T245GKER](#)

For any questions, you can email us directly:

sales@integrated-circuit.com

SN74AVC32T245 32-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation, Level-Shifting, and Tri-State Outputs

1 Features

- Member of the Texas Instruments Widebus+™ Family
- Control Inputs V_{IH}/V_{IL} Levels Referenced to V_{CCA} Voltage
- V_{CC} Isolation Feature – If Either V_{CC} Input is at GND, Both Ports are in the High-Impedance State
- Overtoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications
- Fully Configurable Dual-Rail Design Allows Each Port to Operate Over Full 1.2 V to 3.6 V Power-Supply Range
- I_{off} Supports Partial-Power-Down Mode Operation
- 4.6 V Tolerant I/Os
- Max Data Rates
 - 380 Mbps (1.8 V to 3.3 V Level-Shifting)
 - 200 Mbps (< 1.8 V to 3.3 V Level-Shifting)
 - 200 Mbps (Translate to 2.5 V or 1.8 V)
 - 150 Mbps (Translate to 1.5 V)
 - 100 Mbps (Translate to 1.2 V)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 4000 V Human-Body Model (A114-A)
 - 200 V Machine Model (A115-A)
 - 1000 V Charged-Device Model (C101)

2 Applications

- Personal Electronics
- Industrial
- Enterprise
- Telecom

3 Description

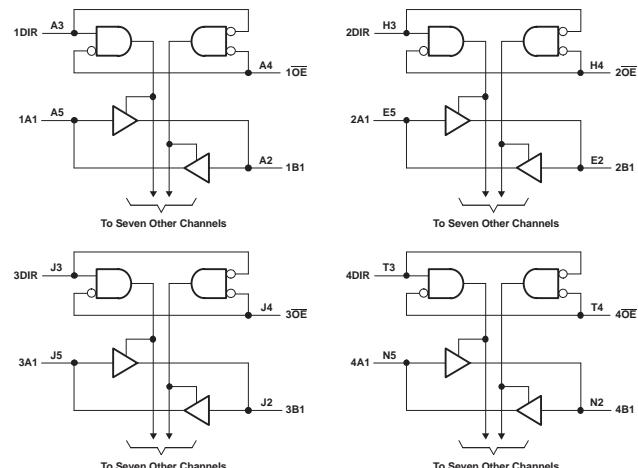
This 32-bit noninverting bus transceiver uses two separate, configurable power-supply rails. The SN74AVC32T245 device is optimized to operate with V_{CCA}/V_{CCB} set from 1.4 V to 3.6 V. It is operational with V_{CCA}/V_{CCB} as low as 1.2 V. The A port is designed to track V_{CCA} . V_{CCA} and accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track V_{CCB} . V_{CCB} and accepts any supply voltage from 1.2 V to 3.6 V. This allows for universal low-voltage bidirectional translation between any of the 1.2 V, 1.5V, 1.8 V, 2.5 V, and 3.3 V voltage nodes.

The SN74AVC32T245 is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can disable the outputs so the buses are effectively isolated.

The SN74AVC32T245 is designed so that the control pins (1DIR, 2DIR, 3DIR, 4DIR, 1OE, 2OE, 3OE, and 4OE) are supplied by V_{CCA} .

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The V_{CC} isolation feature ensures that if either V_{CC} input is at GND, then both ports are in the high-impedance state.


To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN74AVC32T245	LFBGA (96)	13.50 mm x 5.50 mm
	BGA MICROSTAR JUNIOR (96)	8.50 mm x 3.50 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram

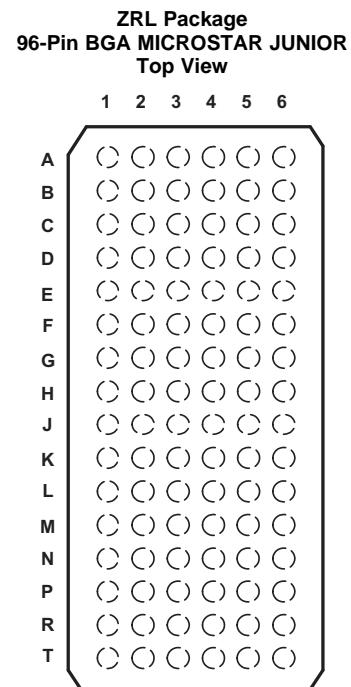
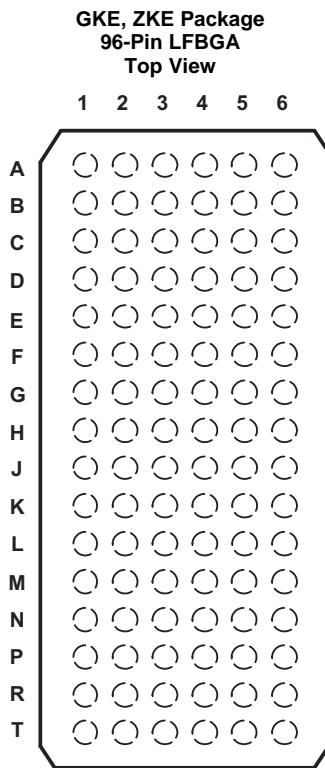
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

SN74AVC32T245

SCES553F – MAY 2004 – REVISED JULY 2015

www.ti.com

Table of Contents



1 Features	1	8.1 Overview	15
2 Applications	1	8.2 Functional Block Diagram	15
3 Description	1	8.3 Feature Description	15
4 Revision History	2	8.4 Device Functional Modes	16
5 Pin Configuration and Functions	3	9 Application and Implementation	17
6 Specifications	6	9.1 Application Information	17
6.1 Absolute Maximum Ratings	6	9.2 EnableTimes	17
6.2 ESD Ratings	6	9.3 Typical Application	18
6.3 Recommended Operating Conditions	7	10 Power Supply Recommendations	20
6.4 Thermal Information	7	11 Layout	20
6.5 Electrical Characteristics	8	11.1 Layout Guidelines	20
6.6 Switching Characteristics: $V_{CCA} = 1.2\text{ V}$	9	11.2 Layout Example	20
6.7 Switching Characteristics: $V_{CCA} = 1.5\text{ V} \pm 0.1\text{ V}$	9	12 Device and Documentation Support	21
6.8 Switching Characteristics: $V_{CCA} = 1.8\text{ V} \pm 0.15\text{ V}$	10	12.1 Documentation Support	21
6.9 Switching Characteristics: $V_{CCA} = 2.5\text{ V} \pm 0.2\text{ V}$	10	12.2 Community Resources	21
6.10 Switching Characteristics: $V_{CCA} = 3.3\text{ V} \pm 0.3\text{ V}$	11	12.3 Trademarks	21
6.11 Operating Characteristics	11	12.4 Electrostatic Discharge Caution	21
6.12 Typical Characteristics	12	12.5 Glossary	21
7 Parameter Measurement Information	14	13 Mechanical, Packaging, and Orderable Information	21
8 Detailed Description	15		

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision E (August 2007) to Revision F	Page
• Added <i>Pin Configuration and Functions</i> section, <i>ESD Ratings</i> table, <i>Feature Description</i> section, <i>Device Functional Modes</i> , <i>Application and Implementation</i> section, <i>Power Supply Recommendations</i> section, <i>Layout</i> section, <i>Device and Documentation Support</i> section, and <i>Mechanical, Packaging, and Orderable Information</i> section	1

5 Pin Configuration and Functions

Table 1. Pin Assignments

	1	2	3	4	5	6
A	1B2	1B1	1DIR	1 \overline{OE}	1A1	1A2
B	1B4	1B3	GND	GND	1A3	1A4
C	1B6	1B5	V_{CCB}	V_{CCA}	1A5	1A6
D	1B8	1B7	GND	GND	1A7	1A8
E	2B2	2B1	GND	GND	2A1	2A2
F	2B4	2B3	V_{CCB}	V_{CCA}	2A3	2A4
G	2B6	2B5	GND	GND	2A5	2A6
H	2B7	2B8	2DIR	2 \overline{OE}	2A8	2A7
J	3B2	3B1	3DIR	3 \overline{OE}	3A1	3A2
K	3B4	3B3	GND	GND	3A3	3A4
L	3B6	3B5	V_{CCB}	V_{CCA}	3A5	3A6
M	3B8	3B7	GND	GND	3A7	3A8
N	4B2	4B1	GND	GND	4A1	4A2
P	4B4	4B3	V_{CCB}	V_{CCA}	4A3	4A4
R	4B6	4B5	GND	GND	4A5	4A6
T	4B7	4B8	4DIR	4 \overline{OE}	4A8	4A7

SN74AVC32T245

SCES553F – MAY 2004 – REVISED JULY 2015

www.ti.com

Pin Functions

PIN		I/O	DESCRIPTION
NO.	NAME		
A1	1B2	Input/Output	Referenced to V_{CCB}
A2	1B1	Input/Output	Referenced to V_{CCB}
A3	1DIR	Input	Direction-control signal
A4	1OE	Input	Tri-State output-mode enables. Pull \overline{OE} high to place all outputs in Tri-State mode. Referenced to V_{CCA}
A5	1A1	Input/Output	Referenced to V_{CCA}
A6	1A2	Input/Output	Referenced to V_{CCA}
B1	1B4	Input/Output	Referenced to V_{CCB}
B2	1B3	Input/Output	Referenced to V_{CCB}
B3	GND	—	Ground
B4	GND	—	Ground
B5	1A3	Input/Output	Referenced to V_{CCA}
B6	1A4	Input/Output	Referenced to V_{CCA}
C1	1B6	Input/Output	Referenced to V_{CCB}
C2	1B5	Input/Output	Referenced to V_{CCB}
C3	V_{CCB}	—	B-port supply voltage. $1.2 \text{ V} \leq V_{CCB} \leq 3.6 \text{ V}$
C4	V_{CCA}	—	A-port supply voltage. $1.2 \text{ V} \leq V_{CCA} \leq 3.6 \text{ V}$
C5	1A5	Input/Output	Referenced to V_{CCA}
C6	1A6	Input/Output	Referenced to V_{CCA}
D1	1B8	Input/Output	Referenced to V_{CCB}
D2	1B7	Input/Output	Referenced to V_{CCB}
D3	GND	—	Ground
D4	GND	—	Ground
D5	1A7	Input/Output	Referenced to V_{CCA}
D6	1A8	Input/Output	Referenced to V_{CCA}
E1	2B2	Input/Output	Referenced to V_{CCB}
E2	2B1	Input/Output	Referenced to V_{CCB}
E3	GND	—	Ground
E4	GND	—	Ground
E5	2A1	Input/Output	Referenced to V_{CCA}
E6	2A2	Input/Output	Referenced to V_{CCA}
F1	2B4	Input/Output	Referenced to V_{CCB}
F2	2B3	Input/Output	Referenced to V_{CCB}
F3	V_{CCB}	—	B-port supply voltage. $1.2 \text{ V} \leq V_{CCB} \leq 3.6 \text{ V}$
F4	V_{CCA}	—	A-port supply voltage. $1.2 \text{ V} \leq V_{CCA} \leq 3.6 \text{ V}$
F5	2A3	Input/Output	Referenced to V_{CCA}
F6	2A4	Input/Output	Referenced to V_{CCA}
G1	2B6	Input/Output	Referenced to V_{CCB}
G2	2B5	Input/Output	Referenced to V_{CCB}
G3	GND	—	Ground
G4	GND	—	Ground
G5	2A5	Input/Output	Referenced to V_{CCA}
G6	2A6	Input/Output	Referenced to V_{CCA}
H1	2B7	Input/Output	Referenced to V_{CCB}
H2	2B8	Input/Output	Referenced to V_{CCB}
H3	2DIR	Input	Direction-control signal

Pin Functions (continued)

PIN		I/O	DESCRIPTION
NO.	NAME		
H4	2 \overline{OE}	Input	Tri-State output-mode enables. Pull \overline{OE} high to place all outputs in Tri-State mode. Referenced to V_{CCA}
H5	2A8	Input/Output	Referenced to V_{CCA}
H6	2A7	Input/Output	Referenced to V_{CCA}
J1	3B2	Input/Output	Referenced to V_{CCB}
J2	3B1	Input/Output	Referenced to V_{CCB}
J3	3DIR	Input	Direction-control signal
J4	3 \overline{OE}	Input	Tri-State output-mode enables. Pull \overline{OE} high to place all outputs in Tri-State mode. Referenced to V_{CCA}
J5	3A1	Input/Output	Referenced to V_{CCA}
J6	3A2	Input/Output	Referenced to V_{CCA}
K1	3B4	Input/Output	Referenced to V_{CCB}
K2	3B3	Input/Output	Referenced to V_{CCB}
K3	GND	—	Ground
K4	GND	—	Ground
K5	3A3	Input/Output	Referenced to V_{CCA}
K6	3A4	Input/Output	Referenced to V_{CCA}
L1	3B6	Input/Output	Referenced to V_{CCB}
L2	3B5	Input/Output	Referenced to V_{CCB}
L3	V_{CCB}	—	B-port supply voltage. $1.2 \text{ V} \leq V_{CCB} \leq 3.6 \text{ V}$
L4	V_{CCA}	—	A-port supply voltage. $1.2 \text{ V} \leq V_{CCA} \leq 3.6 \text{ V}$
L5	3A5	Input/Output	Referenced to V_{CCA}
L6	3A6	Input/Output	Referenced to V_{CCA}
M1	3B8	Input/Output	Referenced to V_{CCB}
M2	3B7	Input/Output	Referenced to V_{CCB}
M3	GND	—	Ground
M4	GND	—	Ground
M5	3A7	Input/Output	Referenced to V_{CCA}
M6	3A8	Input/Output	Referenced to V_{CCA}
N1	4B2	Input/Output	Referenced to V_{CCB}
N2	4B1	Input/Output	Referenced to V_{CCB}
N3	GND	—	Ground
N4	GND	—	Ground
N5	4A1	Input/Output	Referenced to V_{CCA}
N6	4A2	Input/Output	Referenced to V_{CCA}
P1	4B4	Input/Output	Referenced to V_{CCB}
P2	4B3	Input/Output	Referenced to V_{CCB}
P3	V_{CCB}	—	A-port supply voltage. $1.2 \text{ V} \leq V_{CCB} \leq 3.6 \text{ V}$
P4	V_{CCA}	—	A-port supply voltage. $1.2 \text{ V} \leq V_{CCA} \leq 3.6 \text{ V}$
P5	4A3	Input/Output	Referenced to V_{CCA}
P6	4A4	Input/Output	Referenced to V_{CCA}
R1	4B6	Input/Output	Referenced to V_{CCB}
R2	4B5	Input/Output	Referenced to V_{CCB}
R3	GND	—	Ground
R4	GND	—	Ground
R5	4A5	Input/Output	Referenced to V_{CCA}
R6	4A6	Input/Output	Referenced to V_{CCA}

SN74AVC32T245

SCES553F – MAY 2004 – REVISED JULY 2015

www.ti.com

Pin Functions (continued)

PIN		I/O	DESCRIPTION
NO.	NAME		
T1	4B7	Input/Output	Referenced to V_{CCB}
T2	4B8	Input/Output	Referenced to V_{CCB}
T3	4DIR	Input	Direction-control signal
T4	4OE	Input	Tri-State output-mode enables. Pull \overline{OE} high to place all outputs in Tri-State mode. Referenced to V_{CCA}
T5	4A8	Input/Output	Referenced to V_{CCA}
T6	4A7	Input/Output	Referenced to V_{CCA}

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V_{CCA}	Supply voltage		-0.5	4.6	V
V_I	Input voltage ⁽²⁾	I/O ports (A port)	-0.5	4.6	V
		I/O ports (B port)	-0.5	4.6	
		Control inputs	-0.5	4.6	
V_O	Voltage applied to any output in the high-impedance or power-off state ⁽²⁾	A port	-0.5	4.6	V
		B port	-0.5	4.6	
V_O	Voltage range applied to any output in the high or low state ^{(2) (3)}	A port	-0.5	$V_{CCA} + 0.5$	V
		B port	-0.5	$V_{CCB} + 0.5$	
I_{IK}	Input clamp current	$V_I < 0$		-50	mA
I_{OK}	Output clamp current	$V_O < 0$		-50	mA
I_O	Continuous output current			± 50	mA
	Continuous current through each V_{CCA} , V_{CCB} , and GND			± 100	mA
T_{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.

6.2 ESD Ratings

		VALUE	UNIT
$V_{(ESD)}$	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	± 8000	V
	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	± 1000	

(1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

See ⁽¹⁾ ⁽²⁾ ⁽³⁾

		V_{CCI}	V_{CCO}	MIN	MAX	UNIT
V_{CCA}	Supply voltage			1.2	3.6	V
V_{CCB}	Supply voltage			1.2	3.6	V
V_{IH}	High-level input voltage	Data inputs ⁽⁴⁾	1.2 V to 1.95 V	$V_{CCI} \times 0.65$		V
			1.95 V to 2.7 V	1.6		
			2.7 V to 3.6 V	2		
V_{IL}	Low-level input voltage	Data inputs ⁽⁴⁾	1.2 V to 1.95 V	$V_{CCI} \times 0.35$		V
			1.95 V to 2.7 V	0.7		
			2.7 V to 3.6 V	0.8		
V_{IH}	High-level input voltage	DIR (referenced to V_{CCA}) ⁽⁵⁾	1.2 V to 1.95 V	$V_{CCA} \times 0.65$		V
			1.95 V to 2.7 V	1.6		
			2.7 V to 3.6 V	2		
V_{IL}	Low-level input voltage	DIR (referenced to V_{CCA}) ⁽⁵⁾	1.2 V to 1.95 V	$V_{CCA} \times 0.35$		V
			1.95 V to 2.7 V	0.7		
			2.7 V to 3.6 V	0.8		
V_I	Input voltage			0	3.6	V
V_O	Output voltage	Active state		0	V_{CCO}	V
		3-state		0	3.6	
I_{OH}	High-level output current		1.2 V		-3	mA
			1.4 V to 1.6 V		-6	
			1.65 V to 1.95 V		-8	
			2.3 V to 2.7 V		-9	
			3 V to 3.6 V		-12	
I_{OL}	Low-level output current		1.2 V		3	mA
			1.4 V to 1.6 V		6	
			1.65 V to 1.95 V		8	
			2.3 V to 2.7 V		9	
			3 V to 3.6 V		12	
$\Delta t/\Delta v$	Input transition rise or fall rate				5	ns/V
T_A	Operating free-air temperature			-40	85	°C

(1) V_{CCI} is the V_{CC} associated with the data input port.

(2) V_{CCO} is the V_{CC} associated with the output port.

(3) All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

(4) For V_{CCI} values not specified in the data sheet, V_{IH} min = $V_{CCI} \times 0.7$ V, V_{IL} max = $V_{CCI} \times 0.3$ V.

(5) For V_{CCI} values not specified in the data sheet, V_{IH} min = $V_{CCA} \times 0.7$ V, V_{IL} max = $V_{CCA} \times 0.3$ V.

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		SN74AVC32T245		UNIT
		GKE/ZKE (LFBGA)	ZRL (MICROSTAR JUNIOR)	
		96 PINS	96 PINS	
R_{AJA}	Junction-to-ambient thermal resistance	70.7	105.8	°C/W
$R_{AJC(\text{top})}$	Junction-to-case (top) thermal resistance	34.0	1.6	°C/W
R_{AJB}	Junction-to-board thermal resistance	43.5	10.8	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	3.5	3.1	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	43.5	10.8	°C/W

(1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report, [SPRA953](#).

SN74AVC32T245

SCES553F – MAY 2004 – REVISED JULY 2015

www.ti.com

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)⁽¹⁾ ⁽²⁾

PARAMETER	TEST CONDITIONS	V _{CCA}	V _{CCB}	T _A = 25°C			–40°C TO 85°C		UNIT
				MIN	TYP	MAX	MIN	MAX	
V _{OH}	I _{OH} = –100 µA	V _I = V _{IH}	1.2 V to 3.6 V	1.2 V to 3.6 V			V _{CCO} – 0.2 V		V
	I _{OH} = –3 mA		1.2 V	1.2 V		0.95			
	I _{OH} = –6 mA		1.4 V	1.4 V			1.05		
	I _{OH} = –8 mA		1.65 V	1.65 V			1.2		
	I _{OH} = –9 mA		2.3 V	2.3 V			1.75		
	I _{OH} = –12 mA		3 V	3 V			2.3		
V _{OL}	I _{OL} = 100 µA	V _I = V _{IL}	1.2 V to 3.6 V	1.2 V to 3.6 V			0.2		V
	I _{OL} = 3 mA		1.2 V	1.2 V		0.15			
	I _{OL} = 6 mA		1.4 V	1.4 V			0.35		
	I _{OL} = 8 mA		1.65 V	1.65 V			0.45		
	I _{OL} = 9 mA		2.3 V	2.3 V			0.55		
	I _{OL} = 12 mA		3 V	3 V			0.7		
I _I	Control inputs	V _I = V _{CCA} or GND	1.2 V to 3.6 V	1.2 V to 3.6 V	±0.025	±0.25		±1	µA
I _{off}	A or B port	V _I or V _O = 0 to 3.6 V	0 V	0 to 3.6 V	±0.1	±2.5		±5	µA
	A or B port		0 to 3.6 V	0 V	±0.1	±2.5		±5	
I _{OZ} ⁽³⁾	A or B port	V _O = V _{CCO} or GND, V _I = V _{CCI} or GND, OE = V _{IH}	3.6 V	3.6 V	±0.5	±2.5		±5	µA
I _{CCA}	V _I = V _{CCI} or GND, I _O = 0	1.2 V to 3.6 V	1.2 V to 3.6 V				50		µA
		0 V	3.6 V				–10		
		3.6 V	0 V				50		
I _{CCB}	V _I = V _{CCI} or GND, I _O = 0	1.2 V to 3.6 V	1.2 V to 3.6 V				50		µA
		0 V	3.6 V				50		
		3.6 V	0 V				–10		
I _{CCA} + I _{CCB}	V _I = V _{CCI} or GND, I _O = 0	1.2 V to 3.6 V	1.2 V to 3.6 V				90		µA
C _i	Control inputs	V _I = 3.3 V or GND	3.3 V	3.3 V		3.5			pF
C _{io}	A or B port	V _O = 3.3 V or GND	3.3 V	3.3 V		7			pF

(1) V_{CCO} is the V_{CC} associated with the output port.

(2) V_{CCI} is the V_{CC} associated with the input port.

(3) For I/O ports, the parameter I_{OZ} includes the input leakage current.

6.6 Switching Characteristics: $V_{CCA} = 1.2 \text{ V}$

over recommended operating free-air temperature range, $V_{CCA} = 1.2 \text{ V}$ (see Figure 11)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CCB} = 1.2 \text{ V}$	$V_{CCB} = 1.5 \text{ V}$	$V_{CCB} = 1.8 \text{ V}$	$V_{CCB} = 2.5 \text{ V}$	$V_{CCB} = 3.3 \text{ V}$	UNIT
			TYP	TYP	TYP	TYP	TYP	
t_{PLH}	A	B	4.1	3.3	3	2.8	3.2	ns
t_{PHL}			4.1	3.3	3	2.8	3.2	
t_{PLH}	B	A	4.4	4	3.8	3.6	3.5	ns
t_{PHL}			4.4	4	3.8	3.6	3.5	
t_{PZH}	\overline{OE}	A	6.4	6.4	6.4	6.4	6.4	ns
t_{PZL}			6.4	6.4	6.4	6.4	6.4	
t_{PZH}	\overline{OE}	B	6	4.6	4	3.4	3.2	ns
t_{PZL}			6	4.6	4	3.4	3.2	
t_{PHZ}	\overline{OE}	A	6.6	6.6	6.6	6.6	6.8	ns
t_{PLZ}			6.6	6.6	6.6	6.6	6.8	
t_{PHZ}	\overline{OE}	B	6	4.9	4.9	4.2	5.3	ns
t_{PLZ}			6	4.9	4.9	4.2	5.3	

6.7 Switching Characteristics: $V_{CCA} = 1.5 \text{ V} \pm 0.1 \text{ V}$

over recommended operating free-air temperature range, $V_{CCA} = 1.5 \text{ V} \pm 0.1 \text{ V}$ (see Figure 11)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CCB} = 1.2 \text{ V}$	$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$	$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$	$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	UNIT				
			TYP	MIN	MAX	MIN	MAX					
t_{PLH}	A	B	3.6	0.5	6.2	0.5	5.2	0.5	4.1	0.5	3.7	ns
t_{PHL}			3.6	0.5	6.2	0.5	5.2	0.5	4.1	0.5	3.7	
t_{PLH}	B	A	3.3	0.5	6.2	0.5	5.9	0.5	5.6	0.5	5.5	ns
t_{PHL}			3.3	0.5	6.2	0.5	5.9	0.5	5.6	0.5	5.5	
t_{PZH}	\overline{OE}	A	4.3	1	10.1	1	10.1	1	10.1	1	10.1	ns
t_{PZL}			4.3	1	10.1	1	10.1	1	10.1	1	10.1	
t_{PZH}	\overline{OE}	B	5.6	1	10.1	0.5	8.1	0.5	5.9	0.5	5.2	ns
t_{PZL}			5.6	1	10.1	0.5	8.1	0.5	5.9	0.5	5.2	
t_{PHZ}	\overline{OE}	A	4.5	1.5	9.1	1.5	9.1	1.5	9.1	1.5	9.1	ns
t_{PLZ}			4.5	1.5	9.1	1.5	9.1	1.5	9.1	1.5	9.1	
t_{PHZ}	\overline{OE}	B	5.5	1.5	8.7	1.5	7.5	1	6.5	1	6.3	ns
t_{PLZ}			5.5	1.5	8.7	1.5	7.5	1	6.5	1	6.3	

SN74AVC32T245

SCES553F – MAY 2004 – REVISED JULY 2015

www.ti.com

6.8 Switching Characteristics: $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$

over recommended operating free-air temperature range, $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ (see Figure 11)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CCB} = 1.2 \text{ V}$	$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$		$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$		$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		UNIT
			TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t_{PLH}	A	B	3.4	0.5	5.9	0.5	4.8	0.5	3.7	0.5	3.3	ns
t_{PHL}			3.4	0.5	5.9	0.5	4.8	0.5	3.7	0.5	3.3	
t_{PLH}	B	A	3	0.5	5.2	0.5	4.8	0.5	4.5	0.5	4.4	ns
t_{PHL}			3	0.5	5.2	0.5	4.8	0.5	4.5	0.5	4.4	
t_{PZH}	\overline{OE}	A	3.4	1	7.8	1	7.8	1	7.8	1	7.8	ns
t_{PZL}			3.4	1	7.8	1	7.8	1	7.8	1	7.8	
t_{PZH}	\overline{OE}	B	5.4	1	9.2	0.5	7.4	0.5	5.3	0.5	4.5	ns
t_{PZL}			5.4	1	9.2	0.5	7.4	0.5	5.3	0.5	4.5	
t_{PHZ}	\overline{OE}	A	4.2	1.5	7.7	1.5	7.7	1.5	7.7	1.5	7.7	ns
t_{PLZ}			4.2	1.5	7.7	1.5	7.7	1.5	7.7	1.5	7.7	
t_{PHZ}	\overline{OE}	B	5.2	1.5	8.4	1.5	7.1	1	5.9	1	5.7	ns
t_{PLZ}			5.2	1.5	8.4	1.5	7.1	1	5.9	1	5.7	

6.9 Switching Characteristics: $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$

over recommended operating free-air temperature range, $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (see Figure 11)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CCB} = 1.2 \text{ V}$	$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$		$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$		$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		UNIT
			TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t_{PLH}	A	B	3.2	0.5	5.6	0.5	4.5	0.5	3.3	0.5	2.8	ns
t_{PHL}			3.2	0.5	5.6	0.5	4.5	0.5	3.3	0.5	2.8	
t_{PLH}	B	A	2.6	0.5	4.1	0.5	3.7	0.5	3.3	0.5	3.2	ns
t_{PHL}			2.6	0.5	4.1	0.5	3.7	0.5	3.3	0.5	3.2	
t_{PZH}	\overline{OE}	A	2.5	0.5	5.3	0.5	5.3	0.5	5.3	0.5	5.3	ns
t_{PZL}			2.5	0.5	5.3	0.5	5.3	0.5	5.3	0.5	5.3	
t_{PZH}	\overline{OE}	B	5.2	0.5	9.4	0.5	7.3	0.5	5.1	0.5	4.5	ns
t_{PZL}			5.2	0.5	9.4	0.5	7.3	0.5	5.1	0.5	4.5	
t_{PHZ}	\overline{OE}	A	3	1	6.1	1	6.1	1	6.1	1	6.1	ns
t_{PLZ}			3	1	6.1	1	6.1	1	6.1	1	6.1	
t_{PHZ}	\overline{OE}	B	5	1	7.9	1	6.6	1	6.1	1	5.2	ns
t_{PLZ}			5	1	7.9	1	6.6	1	6.1	1	5.2	

6.10 Switching Characteristics: $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$

over recommended operating free-air temperature range, $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (see Figure 11)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CCB} = 1.2 \text{ V}$	$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$	$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$	$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	UNIT
			TYP	MIN	MAX	MIN	MAX	
t_{PLH}	A	B	3.2	0.5	5.5	0.5	4.4	0.5 3.2 0.5 2.7
t_{PHL}			3.2	0.5	5.5	0.5	4.4	0.5 3.2 0.5 2.7
t_{PLH}	B	A	2.8	0.5	3.7	0.5	3.3	0.5 2.8 0.5 2.7
t_{PHL}			2.8	0.5	3.7	0.5	3.3	0.5 2.8 0.5 2.7
t_{PZH}	\overline{OE}	A	2.2	0.5	4.3	0.5	4.2	0.5 4.1 0.5 4
t_{PZL}			2.2	0.5	4.3	0.5	4.2	0.5 4.1 0.5 4
t_{PZH}	\overline{OE}	B	5.1	0.5	9.3	0.5	7.2	0.5 4.9 0.5 4
t_{PZL}			5.1	0.5	9.3	0.5	7.2	0.5 4.9 0.5 4
t_{PHZ}	\overline{OE}	A	3.4	0.5	5	0.5	5	0.5 5
t_{PLZ}			3.4	0.5	5	0.5	5	0.5 5
t_{PHZ}	\overline{OE}	B	4.9	1	7.7	1	6.5	1 5.2 0.5 5
t_{PLZ}			4.9	1	7.7	1	6.5	1 5.2 0.5 5

6.11 Operating Characteristics

$T_A = 25^\circ\text{C}$

PARAMETER	TEST CONDITIONS	$V_{CCA} = V_{CCB} = 1.2 \text{ V}$	$V_{CCA} = V_{CCB} = 1.5 \text{ V}$	$V_{CCA} = V_{CCB} = 1.8 \text{ V}$	$V_{CCA} = V_{CCB} = 2.5 \text{ V}$	$V_{CCA} = V_{CCB} = 3.3 \text{ V}$	UNIT
		TYP	TYP	TYP	TYP	TYP	
$C_{pdA}^{(1)}$	A to B	Outputs enabled	$C_L = 0, f = 10 \text{ MHz}, t_r = t_f = 1 \text{ ns}$	1	1	1	1 2
		Outputs disabled		1	1	1	1
	B to A	Outputs enabled		13	13	14	15 16
		Outputs disabled		1	1	1	1
$C_{pdB}^{(1)}$	A to B	Outputs enabled		13	13	14	15 16
		Outputs disabled		1	1	1	1
	B to A	Outputs enabled		1	1	1	1 2
		Outputs disabled		1	1	1	1

(1) Power dissipation capacitance per transceiver.. Refer to the TI application report, CMOS Power Consumption and C_{pd} Calculation. [SCAA035](#)

Table 2. Typical Total Static Power Consumption ($I_{CCA} + I_{CCB}$)

V_{CCB}	V _{CCA}						UNIT
	0 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
0 V	0	<1	<1	<1	<1	<1	
1.2 V	<1	<2	<2	<2	<2	2	
1.5 V	<1	<2	<2	<2	<2	2	
1.8 V	<1	<2	<2	<2	<2	<2	
2.5 V	<1	2	<2	<2	<2	<2	
3.3 V	<1	2	<2	<2	<2	<2	

SN74AVC32T245

SCES553F – MAY 2004 – REVISED JULY 2015

www.ti.com

6.12 Typical Characteristics

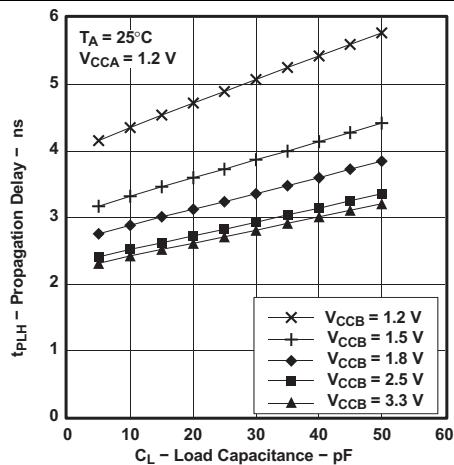


Figure 1. Propagation Delay vs Load Capacitance

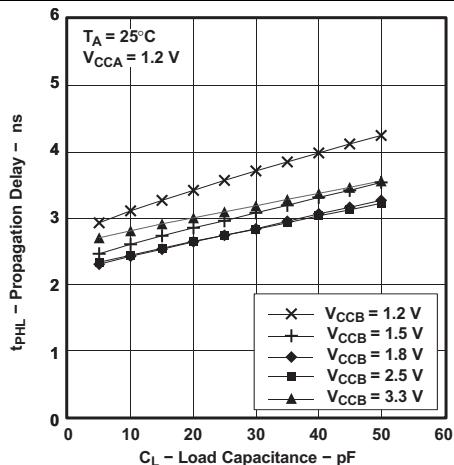


Figure 2. Propagation Delay vs Load Capacitance

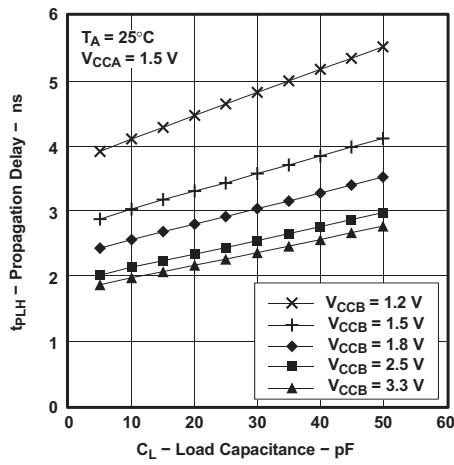


Figure 3. Typical Propagation Delay t_{PLH} (A to B) vs Load Capacitance

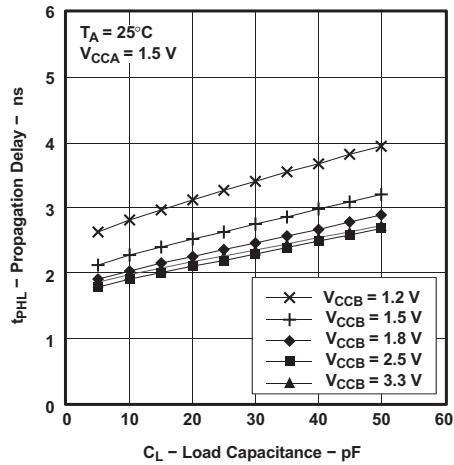


Figure 4. Typical Propagation Delay t_{PLH} (A to B) vs Load Capacitance

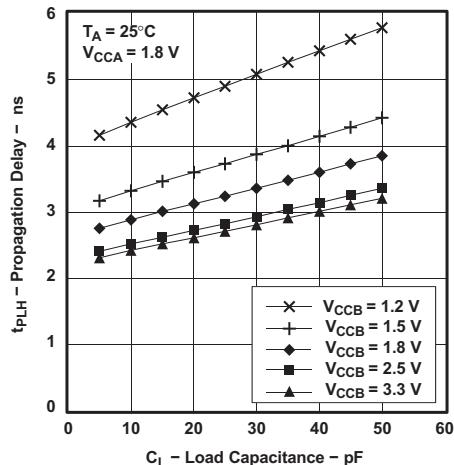


Figure 5. Typical Propagation Delay t_{PLH} (A to B) vs Load Capacitance

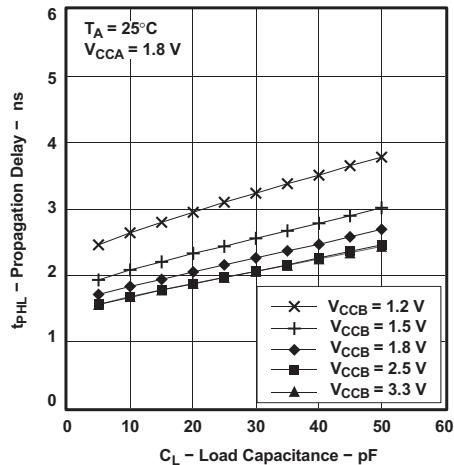


Figure 6. Typical Propagation Delay t_{PLH} (A to B) vs Load Capacitance

Typical Characteristics (continued)

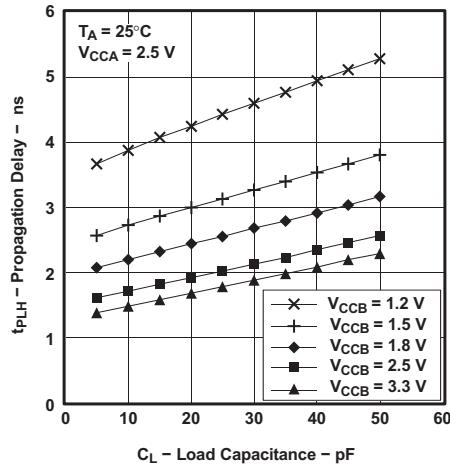


Figure 7. Typical Propagation Delay t_{PLH} (A to B) vs Load Capacitance

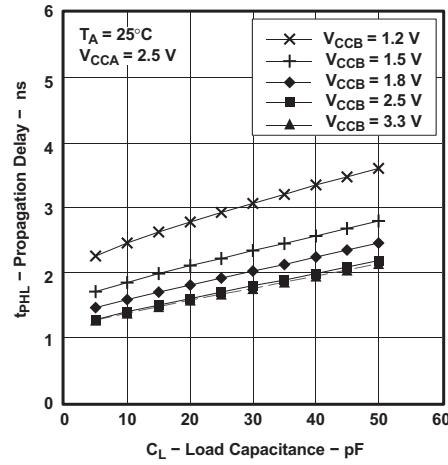


Figure 8. Typical Propagation Delay t_{PLH} (A to B) vs Load Capacitance

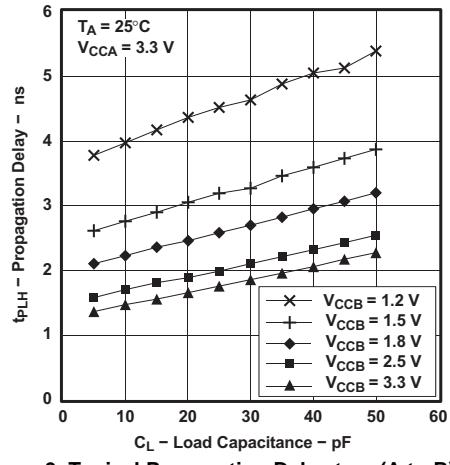
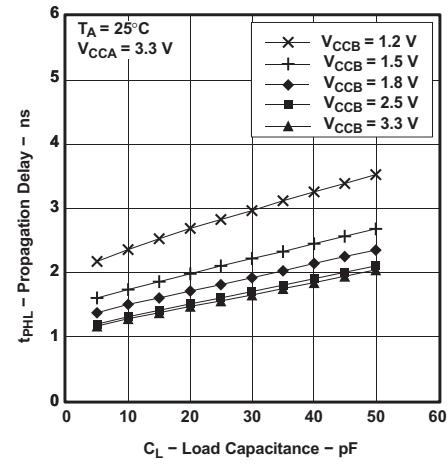
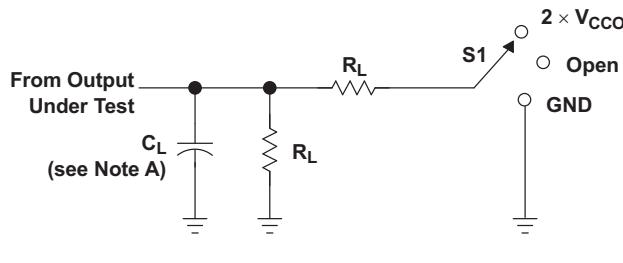


Figure 9. Typical Propagation Delay t_{PLH} (A to B) vs Load Capacitance

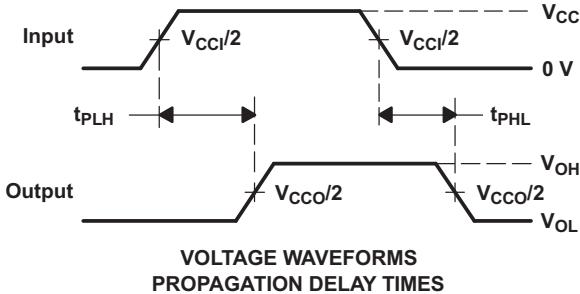



Figure 10. Propagation Delay vs Load Capacitance

SN74AVC32T245

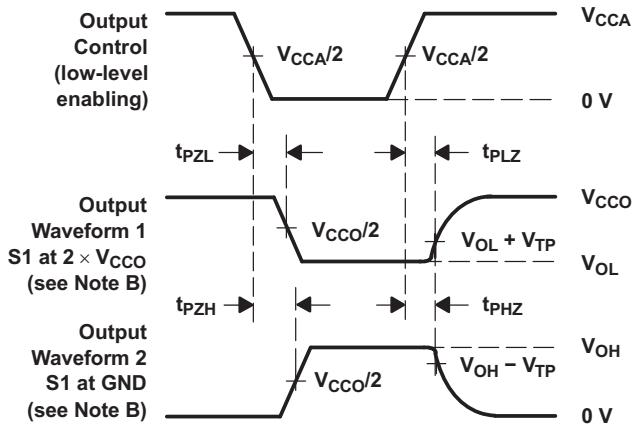
SCES553F – MAY 2004 – REVISED JULY 2015

www.ti.com


7 Parameter Measurement Information


TEST	S_1
t_{pd}	Open
t_{PLZ}/t_{PZL}	$2 \times V_{CCO}$
t_{PHZ}/t_{PZH}	GND

LOAD CIRCUIT


V_{CCO}	C_L	R_L	V_{TP}
1.2 V	15 pF	2 k Ω	0.1 V
$1.5 V \pm 0.1 V$	15 pF	2 k Ω	0.1 V
$1.8 V \pm 0.15 V$	15 pF	2 k Ω	0.15 V
$2.5 V \pm 0.2 V$	15 pF	2 k Ω	0.15 V
$3.3 V \pm 0.3 V$	15 pF	2 k Ω	0.3 V

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS
PULSE DURATION

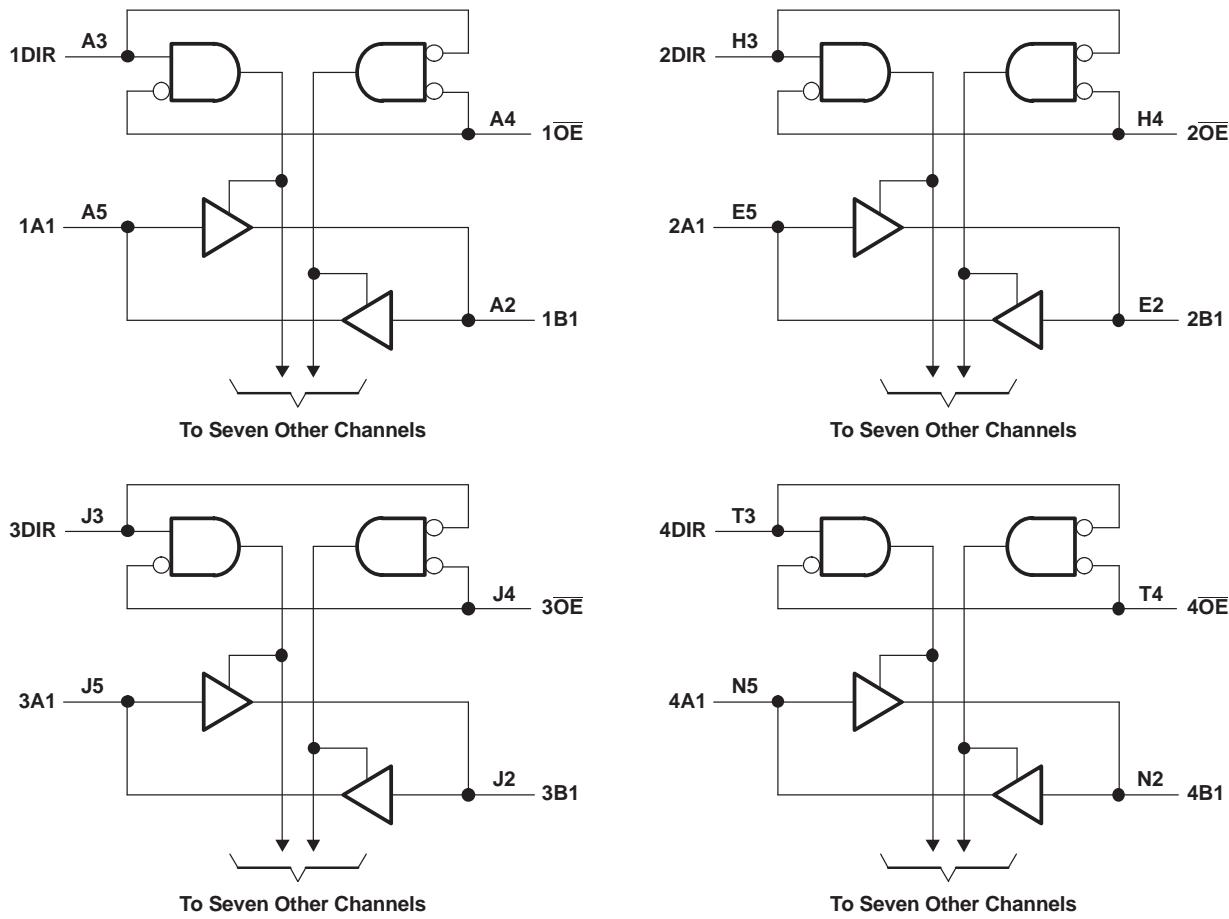
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES

NOTES:

- C_L includes probe and jig capacitance.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: $PRR \leq 10$ MHz, $Z_O = 50 \Omega$, $dv/dt \geq 1$ V/ns.
- The outputs are measured one at a time, with one transition per measurement.
- t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- t_{PZL} and t_{PZH} are the same as t_{en} .
- t_{PLH} and t_{PHL} are the same as t_{pd} .
- V_{CCI} is the V_{CC} associated with the input port.
- V_{CCO} is the V_{CC} associated with the output port.

Figure 11. Load Circuit and Voltage Waveforms

8 Detailed Description


8.1 Overview

The SN74AVC32T245 is a 16-bit, dual-supply noninverting bidirectional voltage level translation. Pins A and control pins (DIR and OE) are supported by V_{CCA} and pins B are supported by V_{CCB} . The A port can accept I/O voltages ranging from 1.2 V to 3.6 V, while the B port can accept I/O voltages from 1.2 V to 3.6 V. A high on DIR allows data transmission from A to B and a low on DIR allows data transmission from B to A when OE is set to low. When \overline{OE} is set to high, both A and B are in the high-impedance state.

This device is fully specified for partial-power-down applications using off output current (I_{off}).

The V_{CC} isolation feature ensures that if either V_{CC} input is at GND, both ports are put in a high-impedance state.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2V to 3.6V Power-Supply Range

Both V_{CCA} and V_{CCB} can be supplied at any voltage from 1.2 V to 3.6 V which makes the device suitable for translating between any of the low voltage nodes (1.2 V, 1.8 V, 2.5 V, and 3.3 V).

SN74AVC32T245

SCES553F – MAY 2004 – REVISED JULY 2015

www.ti.com**Feature Description (continued)****8.3.2 Partial-Power-Down Mode Operation**

This device is fully specified for partial-power-down applications using off output current (I_{off}). The I_{off} circuitry will prevent backflow current by disabling I/O output circuits when device is in partial power-down mode.

8.3.3 V_{CC} Isolation

The V_{CC} isolation feature ensures that if either V_{CCA} or V_{CCB} are at GND, both ports will be in a high-impedance state (I_{OZ}). This prevents false logic levels from being presented to either bus.

8.4 Device Functional Modes

The SN74AVC32T245 is a voltage level translator that can operate from 1.2 V to 3.6 V (V_{CCA}) and 1.2 V to 3.6 V (V_{CCB}). The signal translation between 1.2 V and 3.6 V requires direction control and output enable control. When \overline{OE} is low and DIR is high, data transmission is from A to B. When \overline{OE} is low and DIR is low, data transmission is from B to A. When \overline{OE} is high, both output ports will be high-impedance.

**Table 3. Function Table
Functions
(Each 8-Bit Section)**

INPUTS		OPERATION
\overline{OE}	DIR	
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74AVC32T245 device can be used in level-shifting applications for interfacing devices and addressing mixed voltage incompatibility. The SN74AVC32T245 device is ideal for data transmission where direction is different for each channel.

9.2 EnableTimes

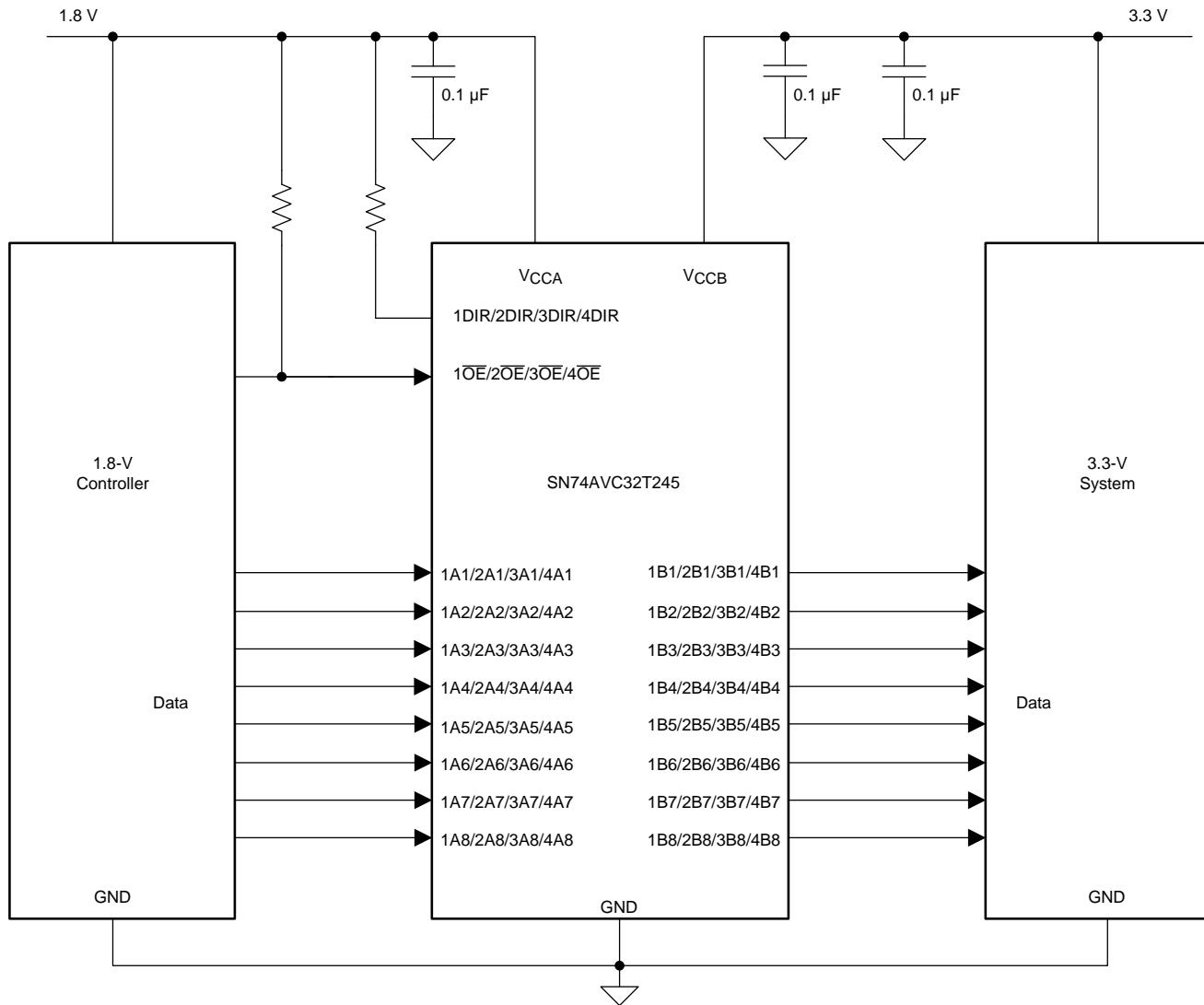
Calculate the enable times for the SN74AVC32T45 using the following formulas:

$$t_{PZH} (\text{DIR to A}) = t_{PLZ} (\text{DIR to B}) + t_{PLH} (\text{B to A}) \quad (1)$$

$$t_{PZL} (\text{DIR to A}) = t_{PHZ} (\text{DIR to B}) + t_{PHL} (\text{B to A}) \quad (2)$$

$$t_{PZH} (\text{DIR to B}) = t_{PLZ} (\text{DIR to A}) + t_{PLH} (\text{A to B}) \quad (3)$$

$$t_{PZL} (\text{DIR to B}) = t_{PHZ} (\text{DIR to A}) + t_{PHL} (\text{A to B}) \quad (4)$$


In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the SN74AVC32T245 initially is transmitting from A to B, then the DIR bit is switched; the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay.

SN74AVC32T245

SCES553F – MAY 2004 – REVISED JULY 2015

www.ti.com

9.3 Typical Application

Figure 12. Application Schematic

9.3.1 Design Requirements

This device uses drivers which are enabled depending on the state of the DIR pin. The designer must know the intended flow of data and take care not to violate any of the high or low logic levels. Unused data inputs must not be floating, as this can cause excessive internal leakage on the input CMOS structure. Tie any unused input and output ports directly to ground.

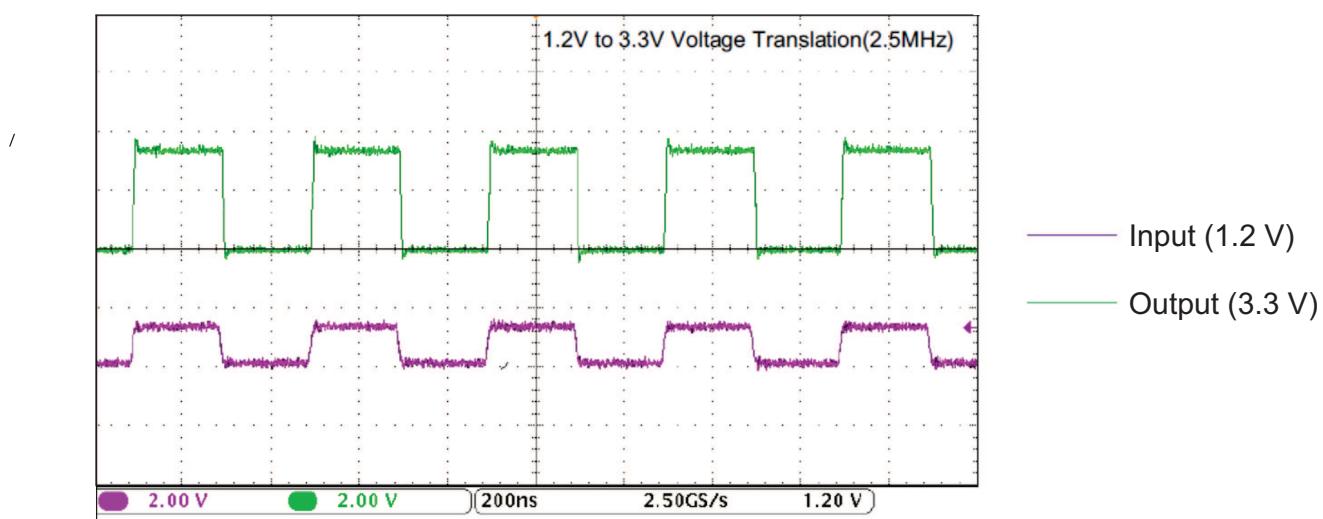
For this design example, use the parameters listed in [Table 4](#).

Table 4. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input voltage range	1.2 V to 3.6 V
Output voltage range	1.2 V to 3.6 V

9.3.2 Detailed Design Procedure

To begin the design process, determine the following:


9.3.2.1 Input Voltage Ranges

Use the supply voltage of the device that is driving the SN74AVC32T245 device to determine the input voltage range. For a valid logic high the value must exceed the V_{IH} of the input port. For a valid logic low the value must be less than the V_{IL} of the input port.

9.3.2.2 Output Voltage Range

Use the supply voltage of the device that the SN74AVC32T245 device is driving to determine the output voltage range.

9.3.3 Application Curve

Figure 13. Translation Up (1.2 V to 3.3 V) at 2.5 MHz

SN74AVC32T245

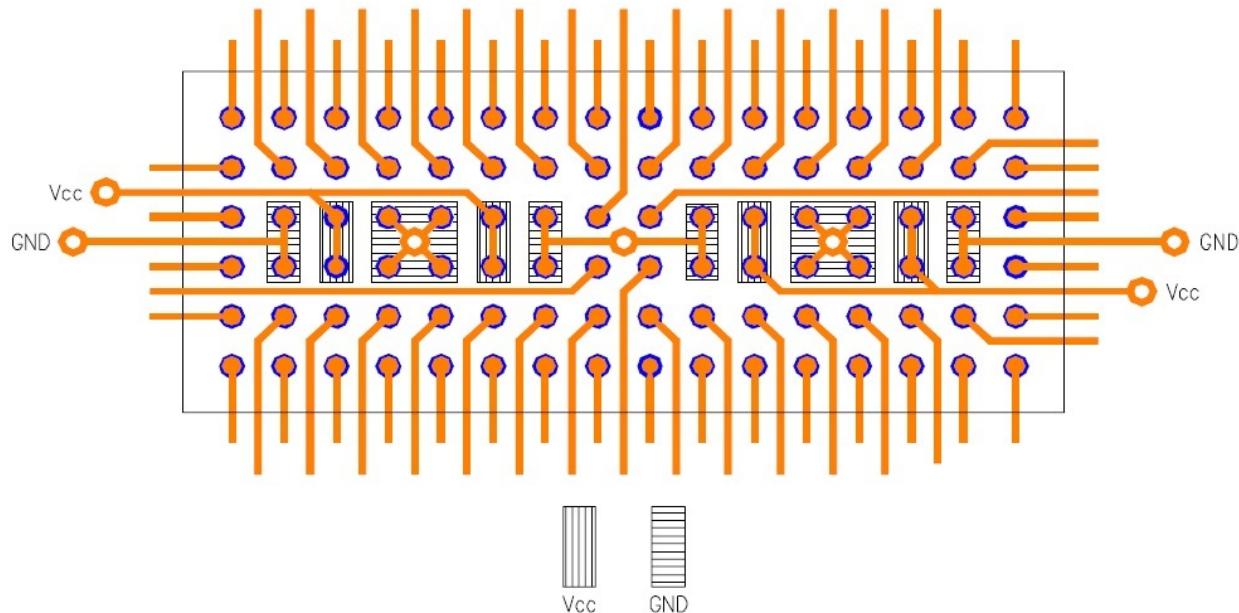
SCES553F – MAY 2004 – REVISED JULY 2015

www.ti.com

10 Power Supply Recommendations

The SN74AVC32T245 device uses two separate configurable power-supply rails, V_{CCA} and V_{CCB} . V_{CCA} accepts any supply voltage from 1.2 V to 3.6 V and V_{CCB} accepts any supply voltage from 1.2 V to 3.6 V. The A port and B port are designed to track V_{CCA} and V_{CCB} , respectively, allowing for low-voltage bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V and 3.3V voltage nodes.

The output-enable \overline{OE} input circuit is designed so that it is supplied by V_{CCA} and when the \overline{OE} input is high, all outputs are placed in the high-impedance state. To ensure the high-impedance state of the outputs during power up or power down, the \overline{OE} input pin must be tied to V_{CCA} through a pullup resistor and must not be enabled until V_{CCA} and V_{CCB} are fully ramped and stable. The minimum value of the pullup resistor to V_{CCA} is determined by the current-sinking capability of the driver.


11 Layout

11.1 Layout Guidelines

To ensure reliability of the device, following common printed-circuit-board layout guidelines is recommended.

- Bypass capacitors must be used on power supplies.
- Short trace lengths must be used to avoid excessive loading.
- Place pads on the signal paths for loading capacitors or pullup resistors to help adjust rise and fall times of signals, depending on the system requirements.
- For detailed layout information, refer to 32-Bit Logic Families in LFBGA Packages [SCEA014](#).

11.2 Layout Example

Figure 14. Ground Balls Are Connected Together Within The PCB

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

32-Bit Logic Families in LFBGA Packages: 96 and 114 Ball Low-Profile Fine-Pitch BGA Packages, SCEA014.

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

TI E2E™ Online Community **TI's Engineer-to-Engineer (E2E) Community.** Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support **TI's Design Support** Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

Widebus+, E2E are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

 These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN74AVC32T245GKER	ACTIVE	LFBGA	GKE	96	1000	TBD	Call TI	Call TI	-40 to 85	WY245	Samples
SN74AVC32T245ZKER	ACTIVE	LFBGA	ZKE	96	1000	TBD	Call TI	Call TI	-40 to 85	WY245	Samples
SN74AVC32T245ZRLR	ACTIVE	BGA MICROSTAR JUNIOR	ZRL	96	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	WY245	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

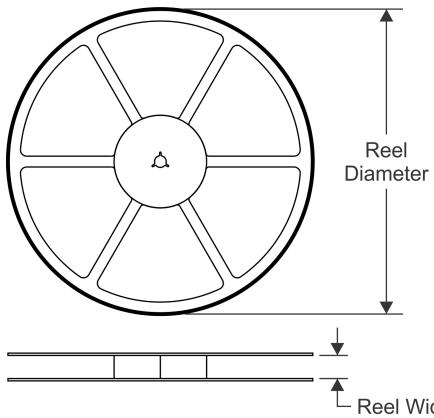
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

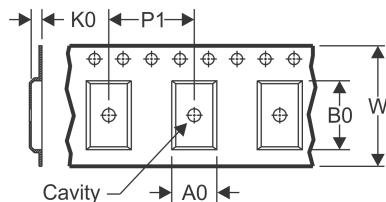
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "-" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

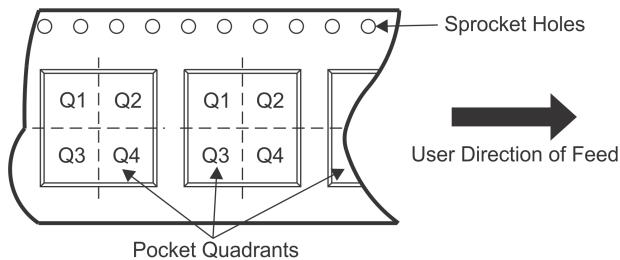

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

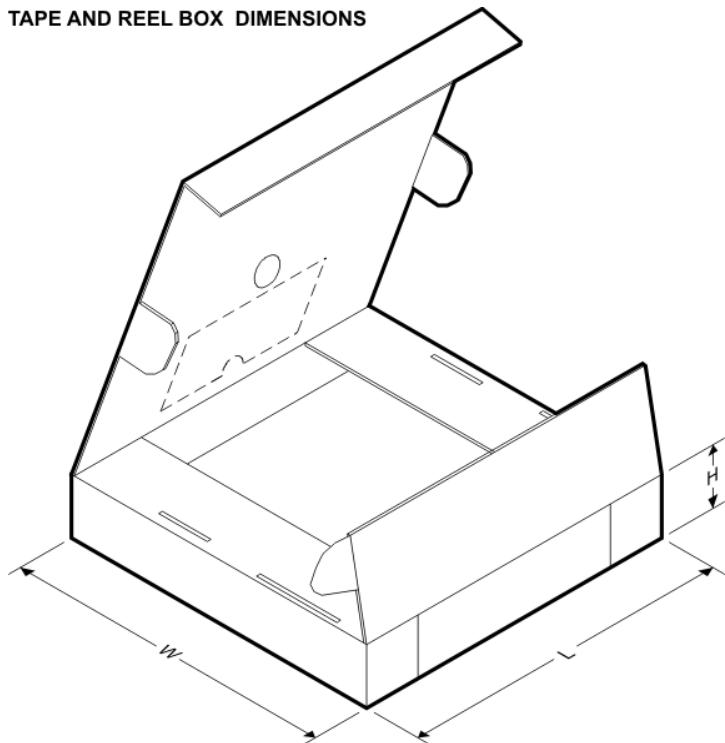
TAPE AND REEL INFORMATION

REEL DIMENSIONS



TAPE DIMENSIONS

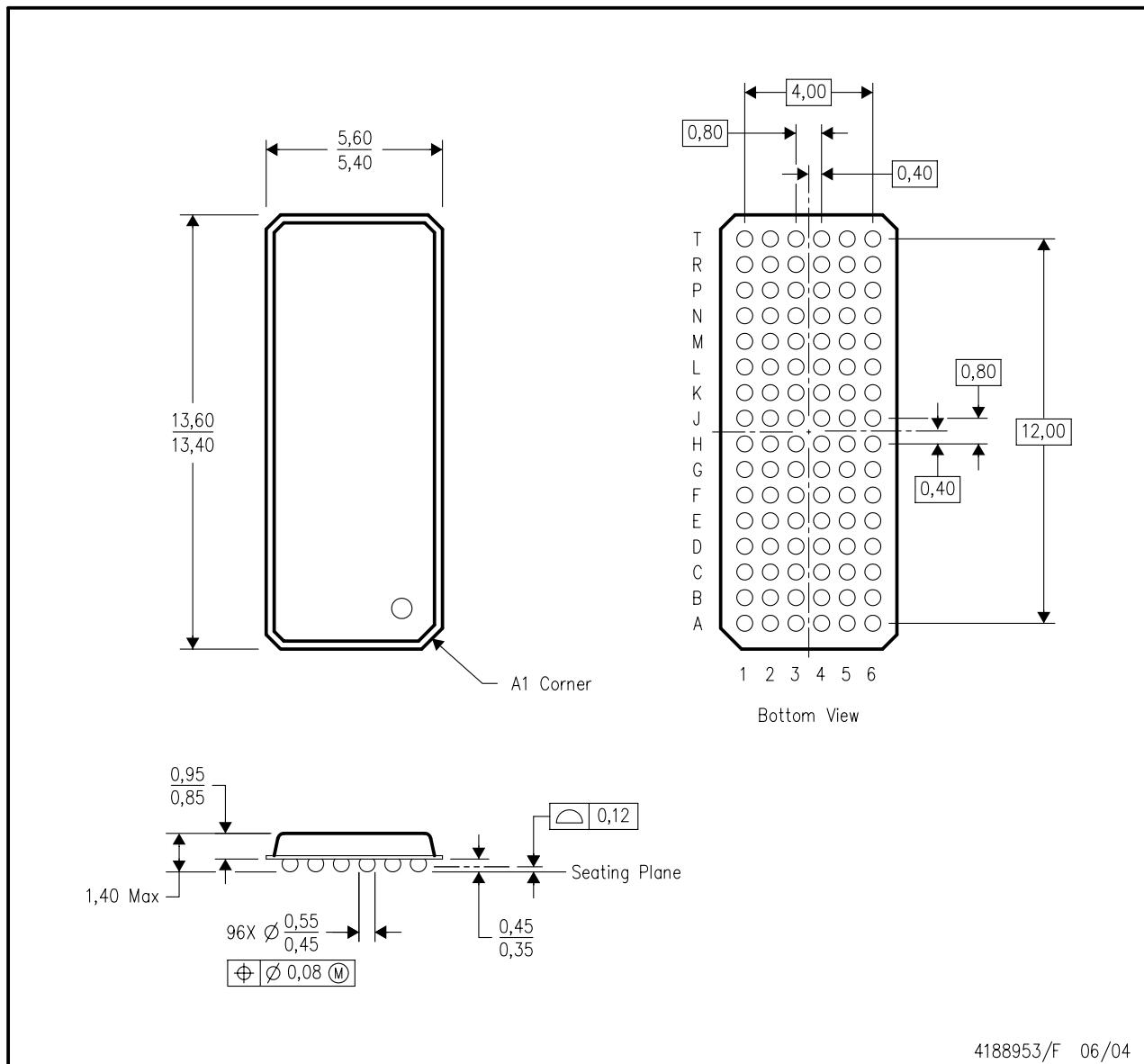
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AVC32T245ZRLR	BGA MI CROSTA R JUNI OR	ZRL	96	2500	330.0	16.4	3.8	8.8	1.4	8.0	16.0	Q1

TAPE AND REEL BOX DIMENSIONS


*All dimensions are nominal

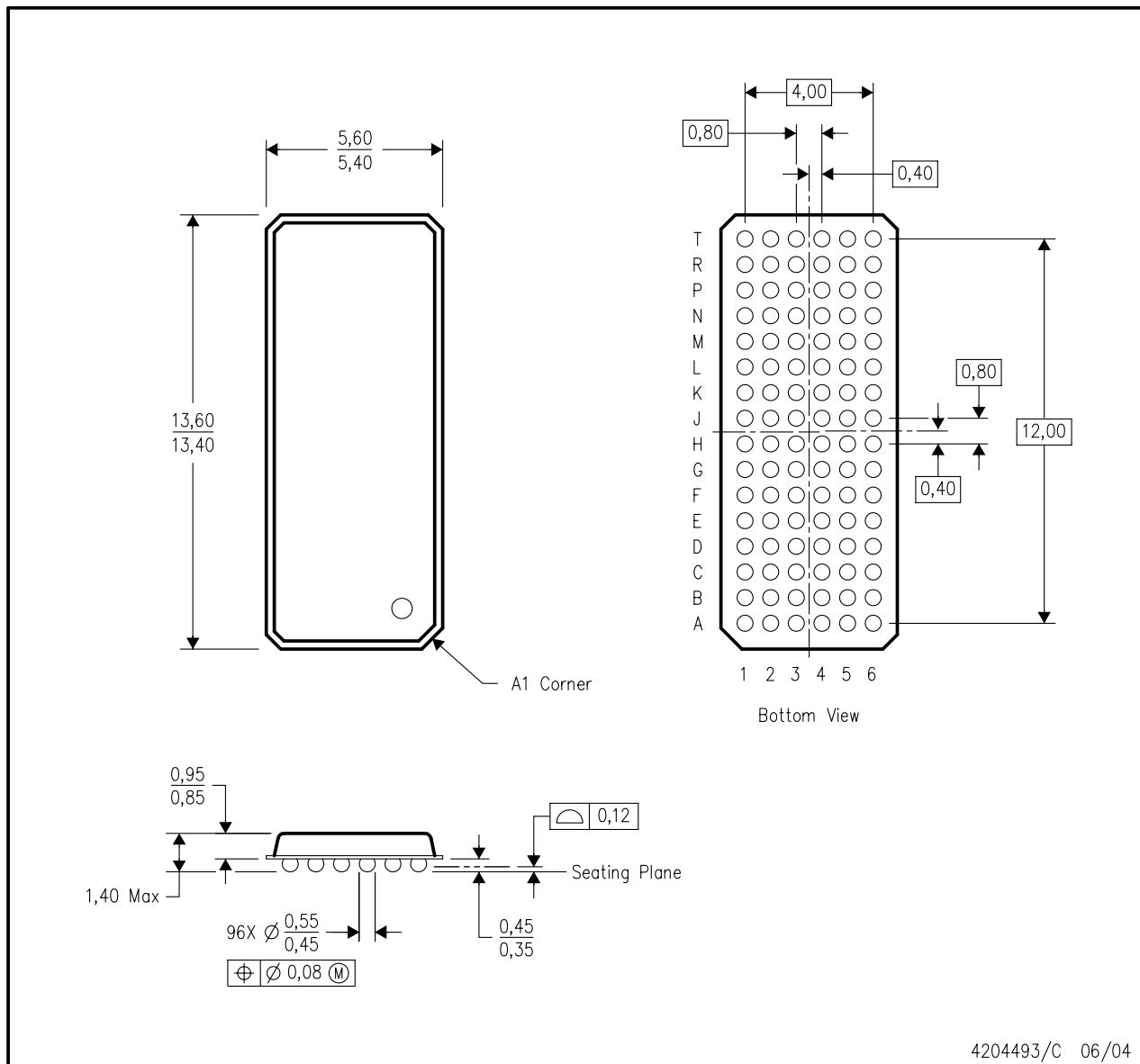
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AVC32T245ZRLR	BGA MICROSTAR JUNIOR	ZRL	96	2500	336.6	336.6	28.6

MECHANICAL DATA

GKE (R-PBGA-N96)

PLASTIC BALL GRID ARRAY

4188953/F 06/04


NOTES:

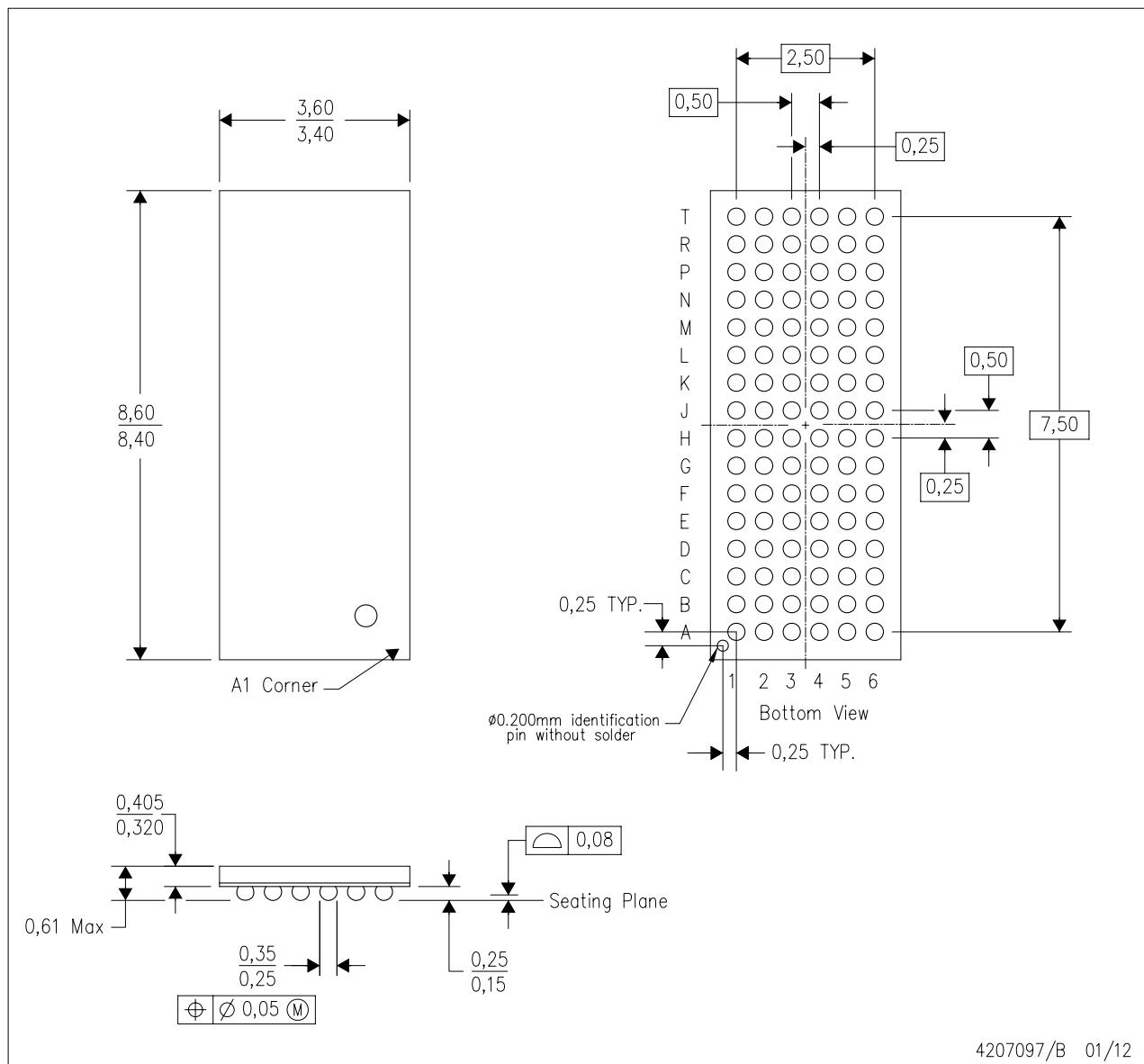
- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Falls within JEDEC MO-205 variation CC.
- This package is tin-lead (SnPb). Refer to the 96 ZKE package (drawing 4204493) for lead-free.

MECHANICAL DATA

ZKE (R-PBGA-N96)

PLASTIC BALL GRID ARRAY

4204493/C 06/04


NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Falls within JEDEC MO-205 variation CC.
- This package is lead-free. Refer to the 96 GKE package (drawing 4188953) for tin-lead (SnPb).

MECHANICAL DATA

ZRL (R-PBGA-N96)

PLASTIC BALL GRID ARRAY

4207097/B 01/12

NOTES:

- All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
- This drawing is subject to change without notice.
- MicroStar Junior™ BGA package configuration.
- This is a Pb-free solder ball design.

MicroStar Junior is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation	www.ti.com/automotive
Communications and Telecom	www.ti.com/communications
Computers and Peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Video and Imaging	www.ti.com/video

TI E2E Community

e2e.ti.com