

## **Excellent Integrated System Limited**

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[ON Semiconductor](#)  
[MC100EPT25DG](#)

For any questions, you can email us directly:

[sales@integrated-circuit.com](mailto:sales@integrated-circuit.com)

## MC100EPT25

### -3.3 V / -5 V Differential ECL to +3.3 V LVTTL Translator

#### Description

The MC100EPT25 is a Differential ECL to LVTTL translator. This device requires +3.3 V, -3.3 V to -5.2 V, and ground. The small outline 8-lead package and the single gate of the EPT25 make it ideal for applications which require the translation of a clock or data signal.

The  $V_{BB}$  output allows the EPT25 to also be used in a single-ended input mode. In this mode the  $V_{BB}$  output is tied to the D input for a inverting buffer or the  $\bar{D}$  input for a non-inverting buffer. If used, the  $V_{BB}$  pin should be bypassed to ground with at least a 0.01  $\mu$ F capacitor.

#### Features

- 1.1 ns Typical Propagation Delay
- Maximum Frequency > 275 MHz Typical
- Operating Range:
  - ◆  $V_{CC} = 3.0$  V to 3.6 V;  $V_{EE} = -5.5$  V to -3.0 V;  $GND = 0$  V
- 24 mA TTL Outputs
- Q Output Will Default LOW with Inputs Open or at  $V_{EE}$
- $V_{BB}$  Output
- Open Input Default State
- Safety Clamp on Inputs
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

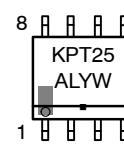


**ON Semiconductor®**

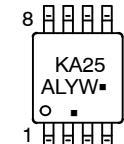
[www.onsemi.com](http://www.onsemi.com)



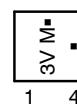
8  
1  
SOIC-8 NB  
D SUFFIX  
CASE  
751-07




8  
1  
TSSOP-8  
DT SUFFIX  
CASE  
948R-02




8  
1  
DFN-8  
MN SUFFIX  
CASE 506AA


#### MARKING DIAGRAMS\*



8  
1  
KPT25  
ALYW



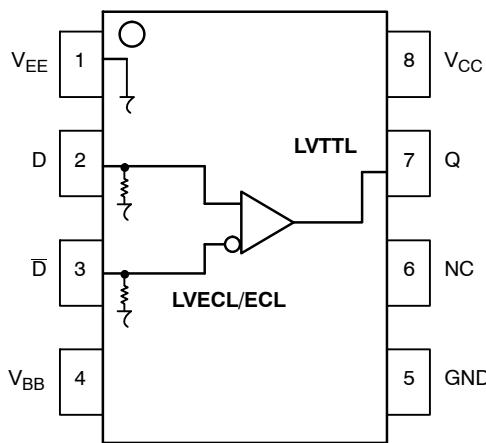
8  
1  
KA25  
ALYW



1  
4  
3V M

A = Assembly Location  
 L = Wafer Lot  
 Y = Year  
 W = Work Week  
 M = Date Code  
 □ = Pb-Free Package

(Note: Microdot may be in either location)


\*For additional marking information, refer to Application Note [AND8002/D](#).

#### ORDERING INFORMATION

| Device          | Package                | Shipping <sup>†</sup> |
|-----------------|------------------------|-----------------------|
| MC100EPT25DG    | SOIC-8 NB<br>(Pb-Free) | 98 Units/Tube         |
| MC100EPT25DR2G  | SOIC-8 NB<br>(Pb-Free) | 2500/Tape & Reel      |
| MC100EPT25DTG   | TSSOP-8<br>(Pb-Free)   | 100 Units/Tube        |
| MC100EPT25DTR2G | TSSOP-8<br>(Pb-Free)   | 2500/Tape & Reel      |
| MC100EPT25MNR4G | DFN-8<br>(Pb-Free)     | 1000/Tape & Reel      |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, [BRD8011/D](#).

## MC100EPT25



**Figure 1. 8-Lead Pinout (Top View) and Logic Diagram**

**Table 1. PIN DESCRIPTION**

| PIN             | FUNCTION                                                                                                                                                                       |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q               | LVTTL Output                                                                                                                                                                   |
| D*, D*          | Differential ECL Input Pair                                                                                                                                                    |
| V <sub>CC</sub> | Positive Supply                                                                                                                                                                |
| V <sub>BB</sub> | Output Reference Voltage                                                                                                                                                       |
| GND             | Ground                                                                                                                                                                         |
| V <sub>EE</sub> | Negative Supply                                                                                                                                                                |
| NC              | No Connect                                                                                                                                                                     |
| EP              | (DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open. |

\* Pins will default LOW when left open.

**Table 2. ATTRIBUTES**

| Characteristics                                               | Value                         |
|---------------------------------------------------------------|-------------------------------|
| Internal Input Pulldown Resistor                              | 75 kΩ                         |
| Internal Input Pullup Resistor                                | N/A                           |
| ESD Protection                                                |                               |
| Human Body Model                                              | > 4 kV                        |
| Machine Model                                                 | > 200 V                       |
| Charged Device Model                                          | > 2 kV                        |
| Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) | Pb-Free Pkg                   |
| SOIC-8 NB<br>TSSOP-8<br>DFN-8                                 | Level 1<br>Level 3<br>Level 1 |
| Flammability Rating<br>Oxygen Index: 28 to 34                 | UL-94 V-0 @ 0.125 in          |
| Transistor Count                                              | 111 Devices                   |
| Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test        |                               |

1. For additional information, see Application Note [AND8003/D](#).

## MC100EPT25

**Table 3. MAXIMUM RATINGS**

| Symbol        | Parameter                                | Condition 1         | Condition 2       | Rating        | Unit |
|---------------|------------------------------------------|---------------------|-------------------|---------------|------|
| $V_{CC}$      | Positive Power Supply                    | GND = 0 V           | $V_{EE} = -5.0$ V | 3.8           | V    |
| $V_{EE}$      | Negative Power Supply                    | GND = 0 V           | $V_{CC} = +3.3$ V | -6            | V    |
| $V_{IN}$      | Input Voltage                            | GND = 0 V           |                   | 0 to $V_{EE}$ | V    |
| $I_{BB}$      | $V_{BB}$ Sink/Source                     |                     |                   | $\pm 0.5$     | mA   |
| $T_A$         | Operating Temperature Range              |                     |                   | -40 to +85    | °C   |
| $T_{stg}$     | Storage Temperature Range                |                     |                   | -65 to +150   | °C   |
| $\theta_{JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm<br>500 lfpm  | SOIC-8 NB         | 190<br>130    | °C/W |
| $\theta_{JC}$ | Thermal Resistance (Junction-to-Case)    | Standard Board      | SOIC-8 NB         | 41 to 44      | °C/W |
| $\theta_{JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm<br>500 lfpm  | TSSOP-8           | 185<br>140    | °C/W |
| $\theta_{JC}$ | Thermal Resistance (Junction-to-Case)    | Standard Board      | TSSOP-8           | 41 to 44      | °C/W |
| $\theta_{JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm<br>500 lfpm  | DFN-8             | 129<br>84     | °C/W |
| $T_{sol}$     | Wave Solder (Pb-Free)                    | <2 to 3 sec @ 260°C |                   | 265           | °C   |
| $\theta_{JC}$ | Thermal Resistance (Junction-to-Case)    | (Note 1)            | DFN-8             | 35 to 40      | °C/W |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. JEDEC standard multilayer board - 2S2P (2 signal, 2 power)

**Table 4. NECL DC CHARACTERISTICS ( $V_{CC} = 3.3$  V;  $V_{EE} = -5.5$  V to -3.0 V; GND = 0.0 V (Note 1))**

| Symbol      | Characteristic                                | -40°C          |       |       | 25°C  |       |       | 85°C           |       |       | Unit |
|-------------|-----------------------------------------------|----------------|-------|-------|-------|-------|-------|----------------|-------|-------|------|
|             |                                               | Min            | Typ   | Max   | Min   | Typ   | Max   | Min            | Typ   | Max   |      |
| $I_{EE}$    | Power Supply Current                          | 8.0            | 16    | 25    | 8.0   | 16    | 25    | 8.0            | 16    | 25    | mA   |
| $V_{IH}$    | Input HIGH Voltage Single-Ended               | -1225          |       | -880  | -1225 |       | -880  | -1225          |       | -880  | mV   |
| $V_{IL}$    | Input LOW Voltage Single-Ended                | -1945          |       | -1625 | -1945 |       | -1625 | -1945          |       | -1625 | mV   |
| $V_{BB}$    | Output Voltage Reference                      | -1525          | -1425 | -1325 | -1525 | -1425 | -1325 | -1525          | -1425 | -1325 | mV   |
| $V_{IHCMR}$ | Input HIGH Voltage Common Mode Range (Note 2) | $V_{EE} + 2.0$ |       |       | 0.0   |       |       | $V_{EE} + 2.0$ |       |       | V    |
| $I_{IH}$    | Input HIGH Current                            |                |       | 150   |       |       | 150   |                |       | 150   | μA   |
| $I_{IL}$    | Input LOW Current                             | 0.5            |       |       | 0.5   |       |       | 0.5            |       |       | μA   |

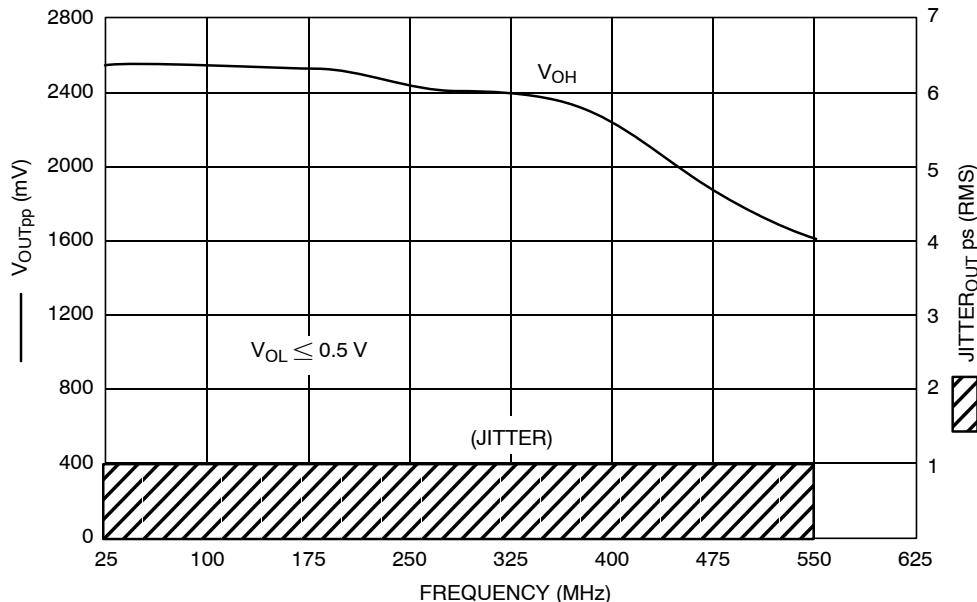
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input parameters vary 1:1 with GND.
2.  $V_{IHCMR}$  min varies 1:1 with  $V_{EE}$ ,  $V_{IHCMR}$  max varies 1:1 with  $V_{CC}$ . The  $V_{IHCMR}$  range is referenced to the most positive side of the differential input signal.

## MC100EPT25

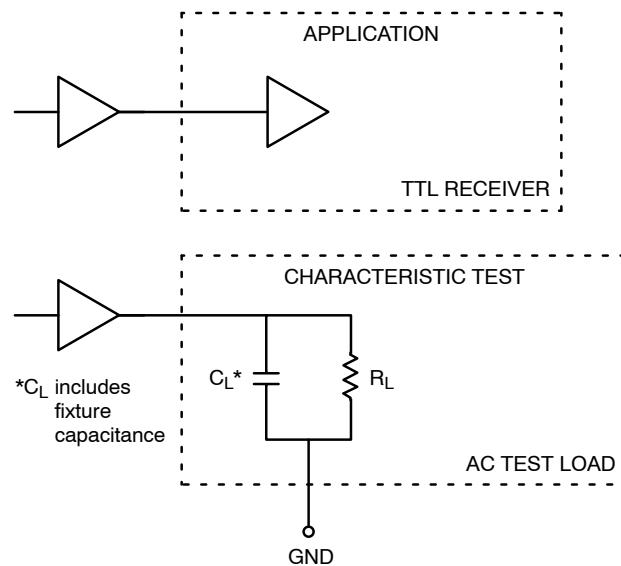
**Table 5. TTL OUTPUT DC CHARACTERISTICS** ( $V_{CC} = 3.3$  V;  $V_{EE} = -5.5$  V to  $-3.0$  V;  $GND = 0.0$  V;  $T_A = -40^\circ\text{C}$  to  $85^\circ\text{C}$ )

| Symbol    | Characteristic       | Condition          | Min | Typ | Max | Unit |
|-----------|----------------------|--------------------|-----|-----|-----|------|
| $V_{OH}$  | Output HIGH Voltage  | $I_{OH} = -3.0$ mA | 2.2 |     |     | V    |
| $V_{OL}$  | Output LOW Voltage   | $I_{OL} = 24$ mA   |     |     | 0.5 | V    |
| $I_{CCH}$ | Power Supply Current |                    | 6   | 10  | 14  | mA   |
| $I_{CCL}$ | Power Supply Current |                    | 7   | 12  | 17  | mA   |


NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

**Table 6. AC CHARACTERISTICS** ( $V_{CC} = 3.0$  V to  $3.6$  V;  $V_{EE} = -5.5$  V to  $-3.0$  V;  $GND = 0.0$  V (Note 1))

| Symbol             | Characteristic                                                     | -40°C               |             |             | 25°C       |             |             | 85°C       |             |             | Unit |
|--------------------|--------------------------------------------------------------------|---------------------|-------------|-------------|------------|-------------|-------------|------------|-------------|-------------|------|
|                    |                                                                    | Min                 | Typ         | Max         | Min        | Typ         | Max         | Min        | Typ         | Max         |      |
| $f_{max}$          | Maximum Frequency<br>(See Figure 2 $F_{max}$ /JITTER)              | 275                 |             |             | 275        |             |             | 275        |             |             | MHz  |
| $t_{PLH}, t_{PHL}$ | Propagation Delay to Output Differential<br>(Cross-Point to 1.5 V) | 500                 | 950         | 1300        | 800        | 950         | 1600        | 800        | 960         | 1600        | ps   |
| $t_{SKPP}$         | Device-to-Device Skew (Note 2)                                     |                     |             | 500         |            |             | 500         |            |             | 500         | ps   |
| $t_{JITTER}$       | Random Clock Jitter (RMS)<br>(See Figure 2 $F_{max}$ /JITTER)      |                     | 0.2         | < 1         |            | 0.2         | < 1         |            | 0.2         | < 1         | ps   |
| $V_{PP}$           | Input Voltage Swing (Differential)                                 | 150                 | 800         | 1200        | 150        | 800         | 1200        | 150        | 800         | 1200        | mV   |
| $t_r$<br>$t_f$     | Output Rise/Fall Times<br>(0.8 V – 2.0 V)                          | Q, $\bar{Q}$<br>900 | 474<br>1160 | 600<br>1400 | 300<br>900 | 459<br>1100 | 600<br>1400 | 300<br>900 | 457<br>1100 | 600<br>1400 | ps   |


NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Measured with a 750 mV 50% duty-cycle clock source.  $R_L = 500$  Ω to GND and  $C_L = 20$  pF to GND. Refer to Figure 3.
2. Skews are measured between outputs under identical conditions.

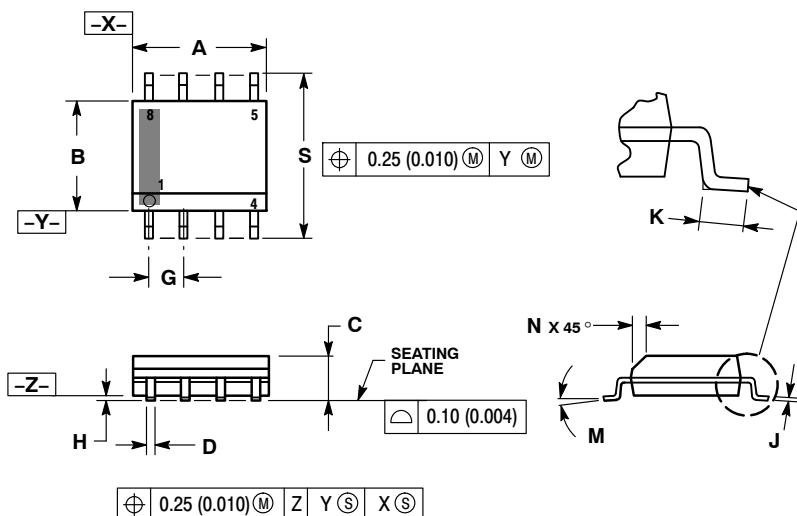


**Figure 2.  $F_{max}$ /Jitter**

## MC100EPT25



**Figure 3. TTL Output Loading Used for Device Evaluation**

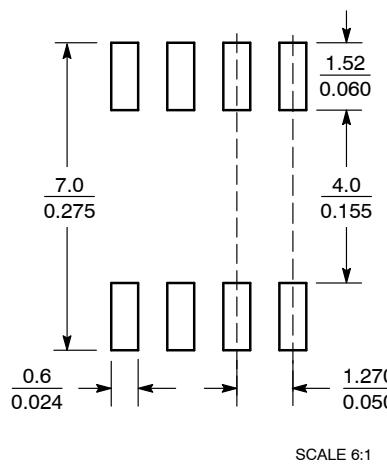

### Resource Reference of Application Notes

- AN1405/D** – ECL Clock Distribution Techniques
- AN1406/D** – Designing with PECL (ECL at +5.0 V)
- AN1503/D** – ECLinPS™ I/O SPiCE Modeling Kit
- AN1504/D** – Metastability and the ECLinPS Family
- AN1568/D** – Interfacing Between LVDS and ECL
- AN1672/D** – The ECL Translator Guide
- AND8001/D** – Odd Number Counters Design
- AND8002/D** – Marking and Date Codes
- AND8020/D** – Termination of ECL Logic Devices
- AND8066/D** – Interfacing with ECLinPS
- AND8090/D** – AC Characteristics of ECL Devices

## MC100EPT25

### PACKAGE DIMENSIONS

**SOIC-8 NB**  
CASE 751-07  
ISSUE AK



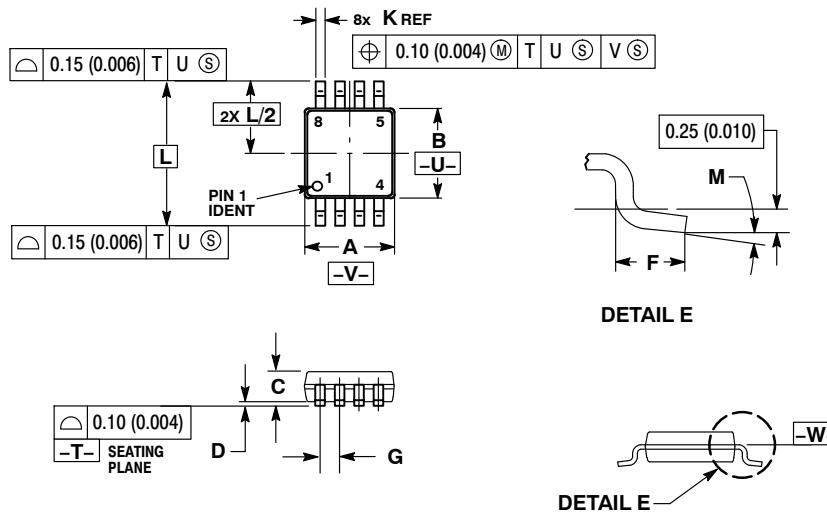

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

| DIM | MILLIMETERS |      | INCHES    |       |
|-----|-------------|------|-----------|-------|
|     | MIN         | MAX  | MIN       | MAX   |
| A   | 4.80        | 5.00 | 0.189     | 0.197 |
| B   | 3.80        | 4.00 | 0.150     | 0.157 |
| C   | 1.35        | 1.75 | 0.053     | 0.069 |
| D   | 0.33        | 0.51 | 0.013     | 0.020 |
| G   | 1.27 BSC    |      | 0.050 BSC |       |
| H   | 0.10        | 0.25 | 0.004     | 0.010 |
| J   | 0.19        | 0.25 | 0.007     | 0.010 |
| K   | 0.40        | 1.27 | 0.016     | 0.050 |
| M   | 0 °         | 8 °  | 0 °       | 8 °   |
| N   | 0.25        | 0.50 | 0.010     | 0.020 |
| S   | 5.80        | 6.20 | 0.228     | 0.244 |

### SOLDERING FOOTPRINT\*



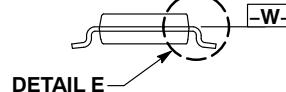

SCALE 6:1 (mm)  
inches)

\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, [SOLDERRM/D](#).

## MC100EPT25

### PACKAGE DIMENSIONS

**TSSOP-8**  
CASE 948R-02  
ISSUE A

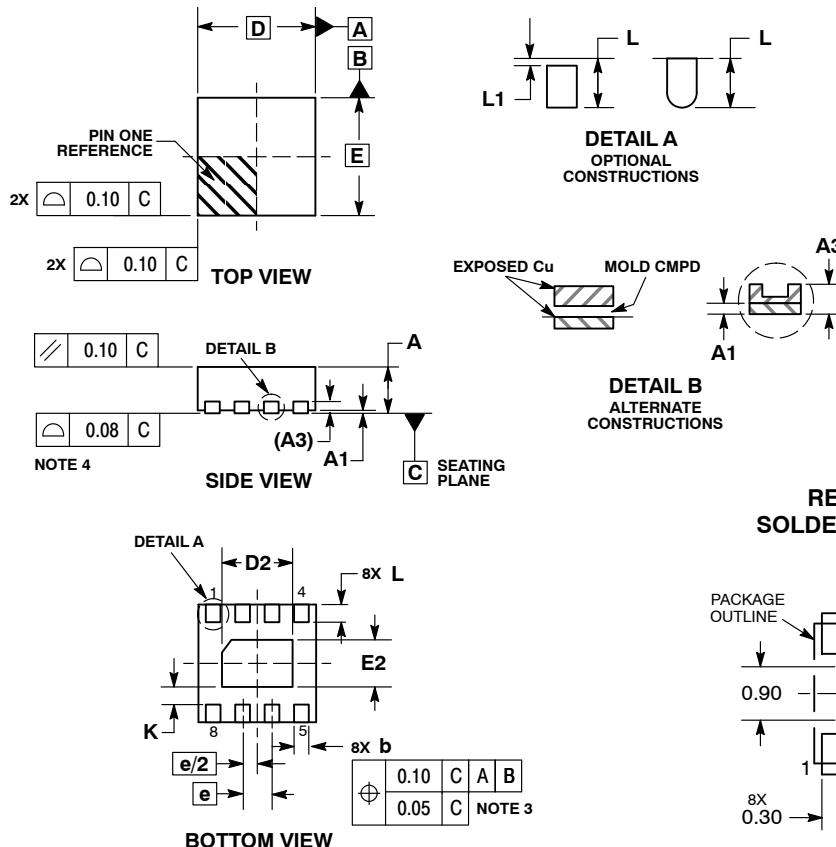



NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

| DIM | MILLIMETERS |      | INCHES    |       |
|-----|-------------|------|-----------|-------|
|     | MIN         | MAX  | MIN       | MAX   |
| A   | 2.90        | 3.10 | 0.114     | 0.122 |
| B   | 2.90        | 3.10 | 0.114     | 0.122 |
| C   | 0.80        | 1.10 | 0.031     | 0.043 |
| D   | 0.05        | 0.15 | 0.002     | 0.006 |
| F   | 0.40        | 0.70 | 0.016     | 0.028 |
| G   | 0.65 BSC    |      | 0.026 BSC |       |
| K   | 0.25        | 0.40 | 0.010     | 0.016 |
| L   | 4.90 BSC    |      | 0.193 BSC |       |
| M   | 0°          | 6°   | 0°        | 6°    |

DETAIL E

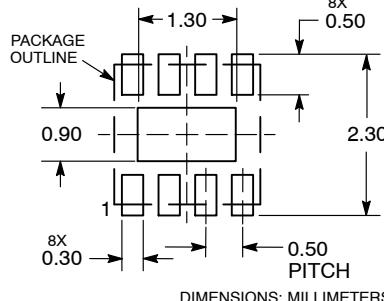



DETAIL E

## MC100EPT25

### PACKAGE DIMENSIONS

**DFN-8 2x2, 0.5P**  
CASE 506AA  
ISSUE F




**NOTES:**

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION *b* APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

| DIM | MILLIMETERS |      |
|-----|-------------|------|
|     | MIN         | MAX  |
| A   | 0.80        | 1.00 |
| A1  | 0.00        | 0.05 |
| A3  | 0.20 REF    |      |
| b   | 0.20        | 0.30 |
| D   | 2.00 BSC    |      |
| D2  | 1.10        | 1.30 |
| E   | 2.00 BSC    |      |
| E2  | 0.70        | 0.90 |
| e   | 0.50 BSC    |      |
| K   | 0.30 REF    |      |
| L   | 0.25        | 0.35 |
| L1  | ---         | 0.10 |

### RECOMMENDED SOLDERING FOOTPRINT\*



DIMENSIONS: MILLIMETERS

\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, [SOLDERRM/D](#).

ECLinPS is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and  are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at [www.onsemi.com/site/pdf/Patent-Marking.pdf](#). ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada  
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada  
Email: [orderlit@onsemi.com](mailto:orderlit@onsemi.com)

**N. American Technical Support:** 800-282-9855 Toll Free  
USA/Canada

**Europe, Middle East and Africa Technical Support:**

Phone: 421 33 790 2910

**Japan Customer Focus Center**

Phone: 81-3-5817-1050

**ON Semiconductor Website:** [www.onsemi.com](http://www.onsemi.com)

**Order Literature:** <http://www.onsemi.com/orderlit>

For additional information, please contact your local  
Sales Representative