Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor MJ14002G

For any questions, you can email us directly: sales@integrated-circuit.com

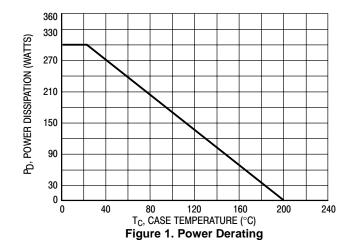
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

MJ14001 (PNP), MJ14002* (NPN), MJ14003* (PNP)

*Preferred Devices

High-Current Complementary Silicon Power Transistors

Designed for use in high-power amplifier and switching circuit applications.


Features

- High Current Capability I_C Continuous = 60 Amperes
- DC Current Gain $-h_{FE} = 15-100$ @ $I_C = 50$ Adc
- Low Collector–Emitter Saturation Voltage $-V_{CE(sat)} = 2.5 \text{ Vdc (Max)}$ @ $I_C = 50 \text{ Adc}$
- Pb-Free Packages are Available*

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating		Symbol	Value	Unit
Collector–Emitter Voltage	MJ14001 MJ14002/03	V _{CEO}	60 80	Vdc
Collector-Base Voltage	MJ14001 MJ14002/03	V _{CBO}	60 80	Vdc
Emitter-Base Voltage		V _{EBO}	5.0	Vdc
Collector Current – Continuous		I _C	60	Adc
Base Current – Continuous		Ι _Β	15	Adc
Emitter Current – Continuous		ΙE	75	Adc
Total Power Dissipation @ T _C = 25°C Derate Above 25°C		P_{D}	300 1.71	W W/°C
Operating and Storage Junction Temperature Range		T _J , T _{stg}	-65 to +200	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

ON Semiconductor®

http://onsemi.com

60 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS 60-80 VOLTS, 300 WATTS

MARKING DIAGRAM

TO-204 (TO-3) CASE 197A STYLE 1

MJ1400x = Device Codexx = 1, 2, or 3

G = Pb-Free Package A = Location Code

YY = Year WW = Work Week MEX = Country of Orgin

ORDERING INFORMATION

Device	Package	Shipping
MJ14001	TO-3	100 Units/Tray
MJ14001G	TO-3 (Pb-Free)	100 Units/Tray
MJ14002	TO-3	100 Units/Tray
MJ14002G	TO-3 (Pb-Free)	100 Units/Tray
MJ14003	TO-3	100 Units/Tray
MJ14003G	TO-3 (Pb-Free)	100 Units/Tray

Preferred devices are recommended choices for future use and best overall value.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Distributor of ON Semiconductor: Excellent Integrated System Limited

Datasheet of MJ14002G - TRANS NPN 80V 60A TO3

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

MJ14001 (PNP), MJ14002* (NPN), MJ14003* (PNP)

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	0.584	°C/W

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					•
Collector–Emitter Sustaining Voltage (Note 1) (I _C = 200 mAdc, I _B = 0)	MJ14001 MJ14002, MJ14003	V _{CEO(sus)}	60 80	-	Vdc
Collector Cutoff Current $(V_{CE} = 30 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 40 \text{ Vdc}, I_B = 0)$	MJ14001 MJ14402, MJ14003	I _{CEO}	- -	1.0 1.0	mA
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{BE(off)} = 1.5 V) (V _{CE} = 80 Vdc, V _{BE(off)} = 1.5 V)	MJ14001 MJ14002, MJ14003	I _{CEX}	- -	1.0 1.0	mA
Collector Cutoff Current $ (V_{CB} = 60 \text{ Vdc}, I_E = 0) $ $ (V_{CB} = 80 \text{ Vdc}, I_E = 0) $	MJ14001 MJ14002, MJ14003	I _{CBO}	- -	1.0 1.0	mA
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)		I _{EBO}	-	1.0	mA
ON CHARACTERISTICS					
DC Current Gain (Note 1) $ \begin{array}{c} (I_C = 25 \text{ Adc, } V_{CE} = 3.0 \text{ V}) \\ (I_C = 50 \text{ Adc, } V_{CE} = 3.0 \text{ V}) \\ (I_C = 60 \text{ Adc, } V_{CE} = 3.0 \text{ V}) \end{array} $		h _{FE}	30 15 5.0	- 100 -	1
		V _{CE(sat)}	- - -	1.0 2.5 3.0	Vdc
$ \begin{array}{l} \text{Base-Emitter Saturation Voltage (Note 1)} \\ \text{(I}_{\text{C}} = 25 \text{ Adc, I}_{\text{B}} = 2.5 \text{ Adc)} \\ \text{(I}_{\text{C}} = 50 \text{ Adc, I}_{\text{B}} = 5.0 \text{ Adc)} \\ \text{(I}_{\text{C}} = 60 \text{ Adc, I}_{\text{B}} = 12 \text{ Adc)} \end{array} $		V _{BE(sat)}	- - -	2.0 3.0 4.0	Vdc
DYNAMIC CHARACTERISTICS					
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz)		C _{ob}	_	2000	pF

^{1.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

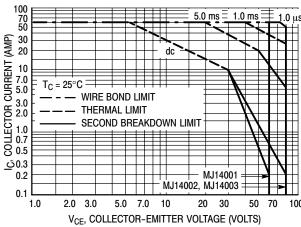
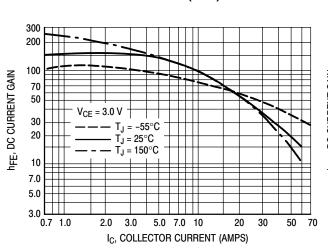


Figure 2. Maximum Rated Forward Biased Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation: i.e., the transistor must not be subjected to greater dissipation than the curves indicate.


The data of Figure 2 is based on $T_{J(pk)} = 200^{\circ}C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 200^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 13. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

Distributor of ON Semiconductor: Excellent Integrated System Limited

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

MJ14001 (PNP), MJ14002* (NPN), MJ14003* (PNP)

TYPICAL ELECTRICAL CHARACTERISTICS

MJ14002 (NPN)

MJ14001, MJ14003 (PNP)

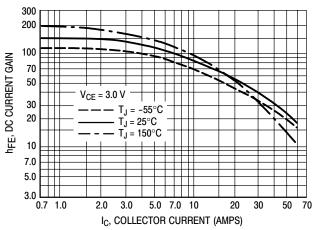
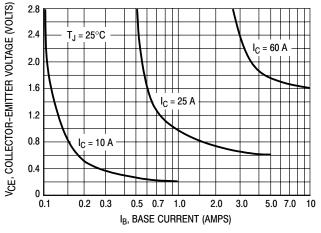



Figure 3. DC Current Gain

Figure 4. DC Current Gain

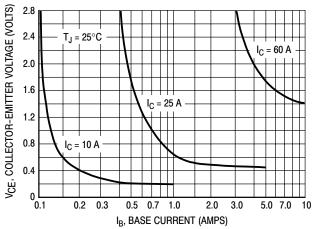
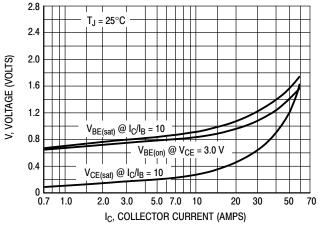



Figure 5. Collector Saturation Region

Figure 6. Collector Saturation Region

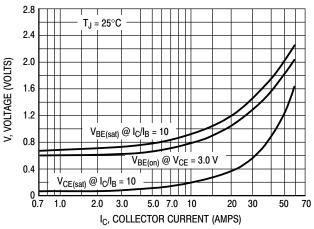


Figure 7. "On" Voltages

Figure 8. "On" Voltages

MJ14001 (PNP), MJ14002* (NPN), MJ14003* (PNP)

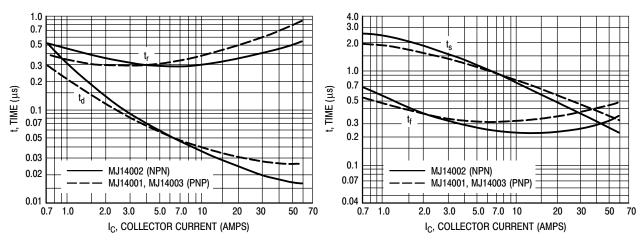


Figure 9. Turn-On Switching Times

Figure 10. Turn-Off Switching Times

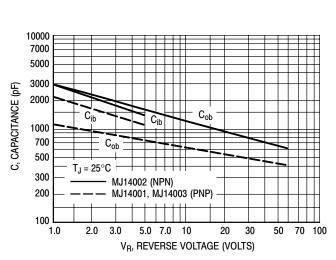
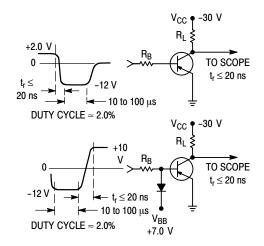



Figure 11. Capacitance Variation

FOR CURVES OF FIGURES 3 & 6, $R_{\rm B}$ & $R_{\rm L}$ ARE VARIED. INPUT LEVELS ARE APPROXIMATELY AS SHOWN. FOR NPN CIRCUITS, REVERSE ALL POLARITIES.

Figure 12. Switching Test Circuit

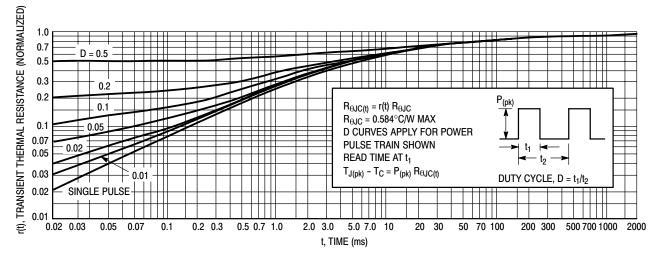
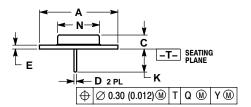
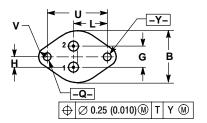


Figure 13. Thermal Response

Distributor of ON Semiconductor: Excellent Integrated System Limited


Datasheet of MJ14002G - TRANS NPN 80V 60A TO3


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

MJ14001 (PNP), MJ14002* (NPN), MJ14003* (PNP)

PACKAGE DIMENSIONS

TO-204 (TO-3) CASE 197A-05 ISSUE K

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	1.530 REF		38.86	REF		
В	0.990	1.050	25.15	26.67		
С	0.250	0.335	6.35	8.51		
D	0.057	0.063	1.45	1.60		
Е	0.060	0.070	1.53	1.77		
G	0.430	0.430 BSC		10.92 BSC		
Н	0.215 BSC		5.46 BSC			
K	0.440	0.480	11.18	12.19		
L	0.665	BSC	16.89 BSC			
N	0.760	0.830	19.31	21.08		
Q	0.151	0.165	3.84	4.19		
U	1.187	BSC	30.15 BSC			
V	0.131	0.188	3.33	4.77		

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was regarded the design or manufacture of the part. SCILLC is an Egual associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 **Phone**: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative