

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor MPS6560G

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Distributor of ON Semiconductor: Excellent Integrated System Limited Datasheet of MPS6560G - TRANS NPN 25V 0.5A TO92 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

MPS6560

Audio Transistor

NPN Silicon

Features

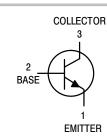
• Pb–Free Package is Available*

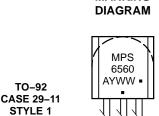
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	25	Vdc
Collector – Base Voltage	V _{CBO}	25	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current – Continuous	۱ _C	500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	W mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient (Note 1)	R_{\thetaJA}	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1. $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.

ON Semiconductor®

http://onsemi.com

MARKING

MPS6560	= Device Code
А	= Assembly Location
Y	= Year
WW	= Work Week
•	= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
MPS6560	TO-92	5,000 Units/Box
MPS6560G	TO–92 (Pb–Free)	5,000 Units/Box

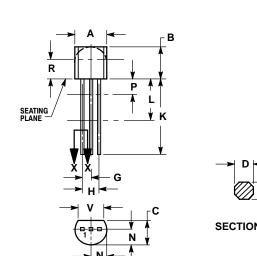
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MPS6560

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Мах	Unit
OFF CHARACTERISTICS				
Collector – Emitter Breakdown Voltage (Note 2) $(I_{C} = 10 \text{ mAdc}, I_{B} = 0)$	V _{(BR)CEO}	25	-	Vdc
Collector – Base Breakdown Voltage $(I_C = 100 \ \mu Adc, I_E = 0)$	V _{(BR)CBO}	25	-	Vdc
Emitter – Base Breakdown Voltage ($I_E = 100 \ \mu Adc, I_C = 0$)	V _{(BR)EBO}	5.0	-	Vdc
Collector Cutoff Current ($V_{CE} = 25 \text{ Vdc}, I_B = 0$)	I _{CES}	_	100	nAdc
Collector Cutoff Current ($V_{CB} = 20$ Vdc, $I_E = 0$)	I _{CBO}	-	100	nAdc
Emitter Cutoff Current ($V_{EB(off)} = 4.0 \text{ Vdc}, I_C = 0$)	I _{EBO}	-	100	nAdc
ON CHARACTERISTICS (Note 2)				
$ \begin{array}{l} \text{DC Current Gain} \\ (I_{C} = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) \\ (I_{C} = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) \\ (I_{C} = 500 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}) \end{array} $	h _{FE}	35 50 50	_ 200	-
Collector – Emitter Saturation Voltage $(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	V _{CE(sat)}	-	0.5	Vdc
Base – Emitter On Voltage (I _C = 500 mAdc, V _{CE} = 1.0 Vdc)	V _{BE(on)}	_	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	fT	60	-	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{obo}	-	30	pF


2. Pulse Test: Pulse Width \leq 300 µs; Duty Cycle \leq 2.0%.

MPS6560

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 **ISSUE AL**

SECTION X-X

NOTES

DIMENSIONING AND TOLERANCING PER ANSI 1. Y14.5M. 1982.

CONTROLLING DIMENSION: INCH. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 3. LEAD DIMENSION IS UNCONTROLLED IN P AND

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.45	5.20	
в	0.170	0.210	4.32	5.33	
c	0.125	0.165	3.18	4.19	
D	0.016	0.021	0.407	0.533	
G	0.045	0.055	1.15	1.39	
Η	0.095	0.105	2.42	2.66	
J	0.015	0.020	0.39	0.50	
Κ	0.500		12.70		
Г	0.250		6.35		
Ν	0.080	0.105	2.04	2.66	
Ρ		0.100		2.54	
R	0.115		2.93		
٧	0.135		3.43		

STYLE 1: PIN 1. EMITTER

BASE 2 COLLECTOR 3

ON Semiconductor and ()) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and all vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a Equilibutors tharmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death and personal injury or death and personal injury or death and succurs of the part. SCILLC is a figure of the part. SCILLC heads the second with such unintended or unauthorized use, even if such claim alleges that SCILLC areading the design or manufacture of the part. SCILLC heads the second with such u associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative