

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor 74VHCT04ASJX

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of 74VHCT04ASJX - IC INVERTER HEX HS 14SOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

FAIRCHILD

December 2007

74VHCT04A — Hex Inverter

74VHCT04A Hex Inverter

Features

- High speed: t_{PD} = 4.7ns (Typ.) at T_A = 25°C
- High noise immunity: $V_{IH} = 2.0V$, $V_{IL} = 0.8V$
- Power down protection is provided on all inputs and outputs
- Low noise: V_{OLP} = 1.0V (Max.)
- Low power dissipation: I_{CC} = 2µA (Max.) @ T_A = 25°C
- Pin and function compatible with 74HCT04

General Description

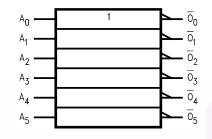
The VHCT04A is an advanced high speed CMOS Inverter fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

The internal circuit is composed of 3 stages including buffer output, which provide high noise immunity and stable output.

Protection circuits ensure that 0V to 7V can be applied to the input pins without regard to the supply voltage and to the output pins with $V_{CC} = 0V$. These circuits prevent device destruction due to mismatched supply and input/ output voltages. This device can be used to interface 3V to 5V systems and two supply systems such as battery backup.

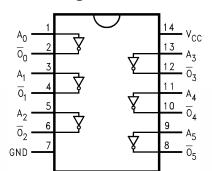
Ordering Information

Order Number	Package Number	Package Description			
74VHCT04AM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow			
74VHCT04ASJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
74VHCT04AMTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153 4.4mm Wide			


Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

All packages are lead free per JEDEC: J-STD-020B standard.

www.fairchildsemi.com


Logic Symbol

Pin Description

Pin Names	Description
A _n	Inputs
Ōn	Outputs

Connection Diagram

Truth Table

A	ō
L	Н
Н	L

74VHCT04A — Hex Inverter

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
V _{IN}	DC Input Voltage	-0.5V to +7.0V
V _{OUT}	DC Output Voltage	
	Note 1	–0.5V to V _{CC} + 0.5V
	Note 2	–0.5V to 7.0V
I _{IK}	Input Diode Current	–20mA
I _{OK}	Output Diode Current ⁽³⁾	±20mA
I _{OUT}	DC Output Current	±25mA
I _{CC}	DC V _{CC} /GND Current	±50mA
T _{STG}	Storage Temperature	–65°C to +150°C
Т	Lead Temperature (Soldering, 10 seconds)	260°C

Recommended Operating Conditions⁽⁴⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	4.5V to +5.5V
V _{IN}	Input Voltage	0V to +5.5V
V _{OUT}	Output Voltage	
	Note 2	0V to V _{CC}
	Note 3	0V to 5.5V
T _{OPR}	Operating Temperature	-40°C to +85°C
t _r , t _f	Input Rise and Fall Time, $V_{CC} = 5.0V \pm 0.5V$	0ns/V ~ 20ns/V

Notes:

1. HIGH or LOW state. I_{OUT} absolute maximum rating must be observed.

2. $V_{CC} = 0V$.

3. $V_{OUT} < GND$, $V_{OUT} > V_{CC}$ (Outputs Active).

4. Unused inputs must be held HIGH or LOW. They may not float.

					T _A = 25°C			T _A = -40°C to +85°C		
Symbol Parameter		V _{CC} (V) Conditions			Min.	Тур.	Max.	Min.	Max.	Units
V _{IH}	HIGH Level Input	4.5			2.0			2.0		V
	Voltage	5.5			2.0			2.0		
V _{IL}	LOW Level Input	4.5					0.8		0.8	V
	Voltage	5.5					0.8		0.8	
V _{OH} HIGH Level Output	4.5	$V_{IN} = V_{IH}$	$I_{OH} = -50 \mu A$	4.40	4.50		4.40		V	
	Voltage			I _{OH} =8mA	3.94			3.80		1
V _{OL}	LOW Level Output	4.5	$V_{IN} = V_{IH}$	$I_{OL} = 50 \mu A$		0.0	0.1		0.1	V
	Voltage			$I_{OL} = 8mA$			0.36		0.44	
I _{IN}	Input Leakage Current	0 – 5.5	V _{IN} = 5.5V	or GND			±0.1		±1.0	μA
Icc	Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$	$V_{IN} = V_{CC}$ or GND			2.0		20.0	μA
I _{ССТ}	Maximum I _{CC} /Input	5.5	$V_{IN} = 3.4V$ Inputs = V	, Other _{CC} or GND			1.35		1.50	mA
I _{OFF}	Output Leakage Current (Power Down State)	0.0	V _{OUT} = 5.5	5V			0.5		5.0	μA

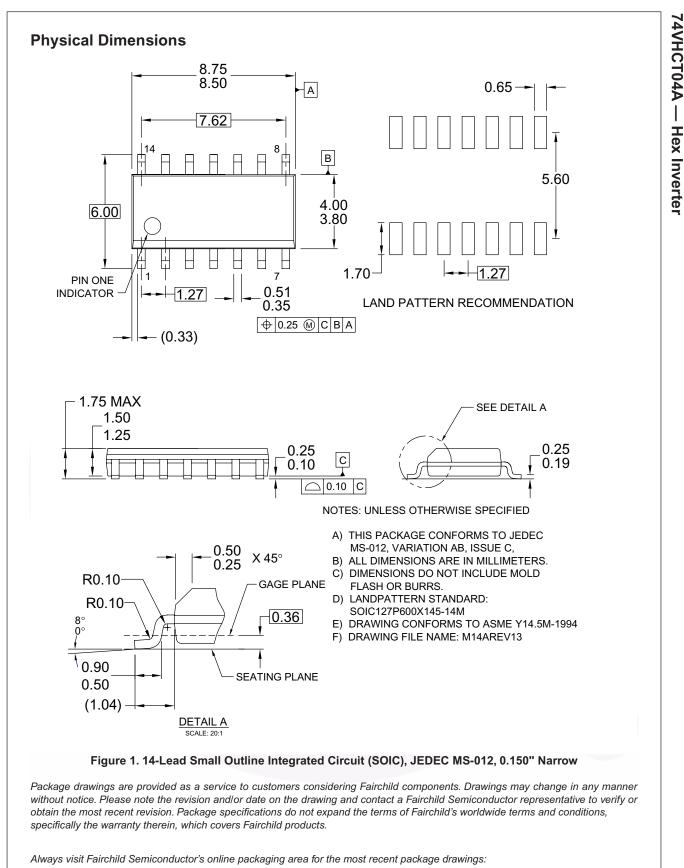
Noise Characteristics

				T _A =	25°C	
Symbol	Parameter	Conditions	$V_{CC}(V)$	Тур.	Limit	Units
V _{OLP} ⁽⁵⁾	Quiet Output Maximum Dynamic V _{OL}	$C_L = 50 pF$	5.0	0.8	1.0	V
V _{OLV} ⁽⁵⁾	Quiet Output Minimum Dynamic V _{OL}	$C_L = 50 pF$	5.0	-0.8	1.0	V
V _{IHD} ⁽⁵⁾	Minimum HIGH Level Dynamic Input Voltage	$C_L = 50 pF$	5.0		2.0	V
V _{ILD} ⁽⁵⁾	Maximum LOW Level Dynamic Input Voltage	$C_L = 50 pF$	5.0		0.8	V

Note:

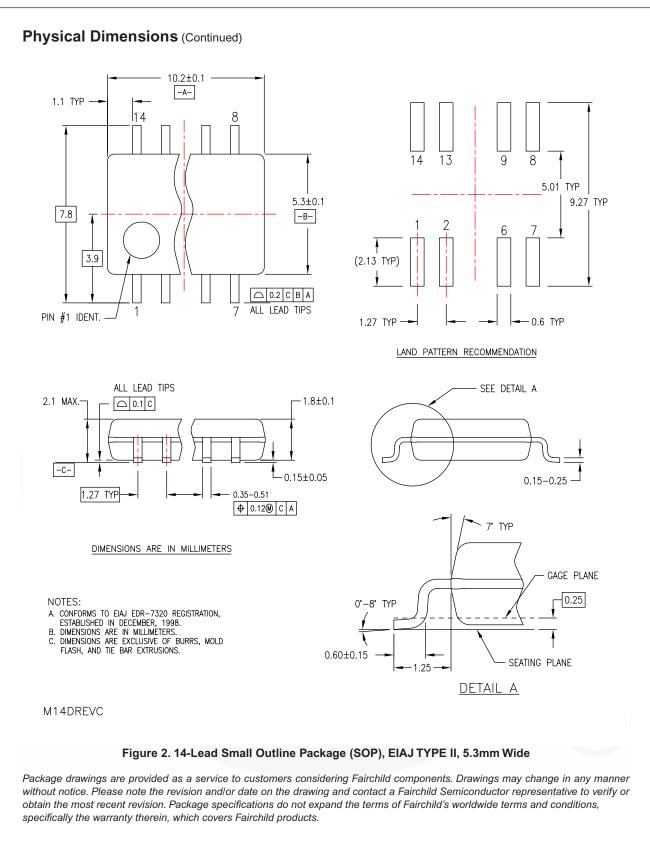
5. Parameter guaranteed by design.

AC Electrical Characteristics


				т	A = 25°	с		-40°C 85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Min.	Тур.	Max.	Min.	Max.	Units
t _{PHL} , t _{PLH}	Propagation Delay	5.0 ± 0.5	$C_L = 15 pF$		4.7	6.7	1.0	7.5	ns
			$C_L = 50 pF$		5.5	7.7	1.0	8.5	
C _{IN}	Input Capacitance		V _{CC} = Open		4	10		10	pF
C _{PD}	Power Dissipation Capacitance		(6)		17				pF

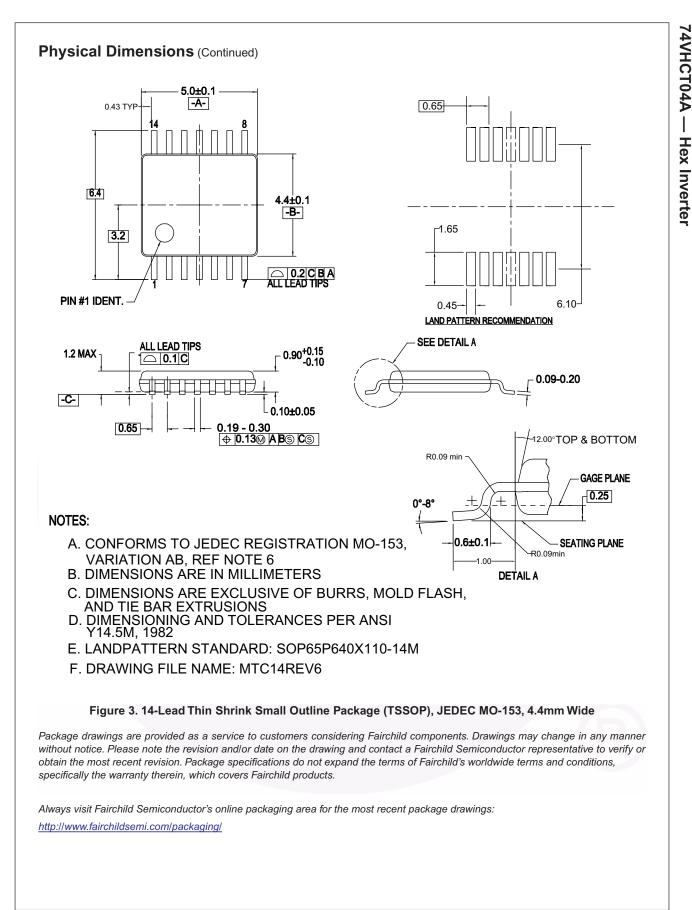
Note:

6. C_{PD} is defined as the value of the internal equivalent capacitance, which is calculated from the operating current consumption without load. Average operating current can be obtained from the equation: I_{CC} (Opr.) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 6$ (per gate)


Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of 74VHCT04ASJX - IC INVERTER HEX HS 14SOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

http://www.fairchildsemi.com/packaging/

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of 74VHCT04ASJX - IC INVERTER HEX HS 14SOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

74VHCT04A — Hex Inverter

FAIRCHIL SEMICONDUCTOR

TRADEMARKS

Build it Now™

CROSSVOLT™

EZSWITCH™ *

Current Transfer Logic™

Fairchild Semiconductor®

FACT Quiet Series™

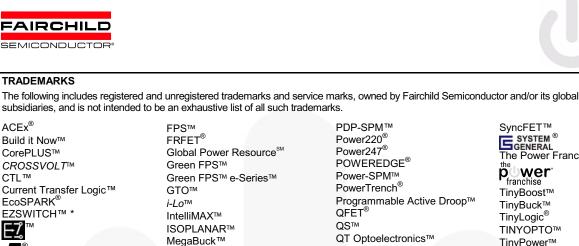
CorePLUS™

EcoSPARK[®]

ACFx®

CTL™

E-‰


Fairchild®

FACT

FAST®

FastvCore™

FlashWriter[®]

Quiet Series™

STEALTH™

SuperFET™

SuperSOT™-3

SuperSOT™-6 SuperSOT™-8

SPM

RapidConfigure™

SMART START™

SyncFET™ SYSTEM[®] GENERAL The Power Franchise[®] franchise Poos bwer TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™ UHC[®] Ultra FRFET™ UniFFT™

VCX™

* EZSWITCH[™] and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

MICROCOUPLER™

MicroFFT™

MicroPak™ MillerDrive™

Motion-SPM™

OPTOLOGIC[®]

OPTOPLANAR®

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

PRODUCT STATUS DEFINITIONS

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

©1997 Fairchild Semiconductor Corporation 74VHCT04A Rev. 1.4.0