

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor FDR858P

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

SEMICONDUCTOR TM

FDR858P

Single P-Channel, Logic Level, PowerTrench[™] MOSFET

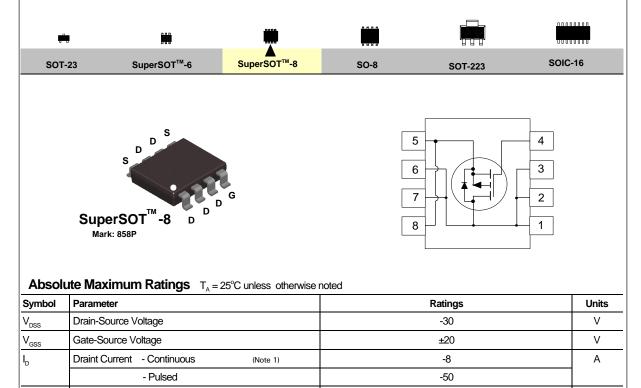
General Description

The SuperSOT-8 family of P-Channel Logic Level MOSFETs have been designed to provide a low profile, small footprint alternative to industry standard SO-8 little foot type product.

This P-Channel Logic Level MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.

These devices are well suited for notebook computer applications: load switching and power management, battery charging circuits, and DC/DC conversion.

Features


- -8 A, -30 V. $R_{DS(ON)} = 0.019 \ \Omega @ V_{GS} = -10 V$, $\mathsf{R}_{\mathrm{DS(ON)}} = 0.028 \ \Omega @ \mathsf{V}_{\mathrm{GS}} = -4.5 \ \mathsf{V}.$
- Low gate charge (21nC typical).

1.8

 High performance trench technology for extremely low R_{DS(ON)}.

February 1999

SuperSOT[™]-8 package: small footprint (40%) less than SO-8); low profile (1mm thick); maximum power comperable to SO-8.

1 (Note 1c) 0.9 $\mathsf{T}_{\mathsf{J}},\mathsf{T}_{\mathsf{STG}}$ Operating and Storage Temperature Range -55 to 150 THERMAL CHARACTERISTICS $\mathsf{R}_{_{\theta \mathsf{J}\mathsf{A}}}$ Thermal Resistance, Junction-to-Ambient (Note 1a) 70 Thermal Resistance, Junction-to-Case 20 $R_{\mu JC}$ (Note 1)

(Note 1a)

(Note 1b)

© 1999 Fairchild Semiconductor Corporation

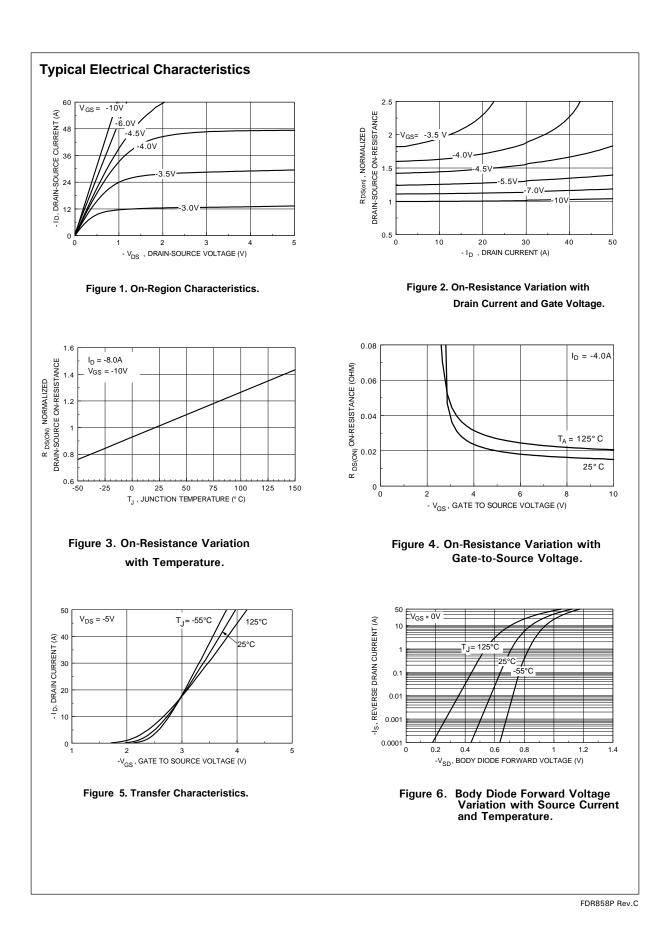
Maximum Power Dissipation

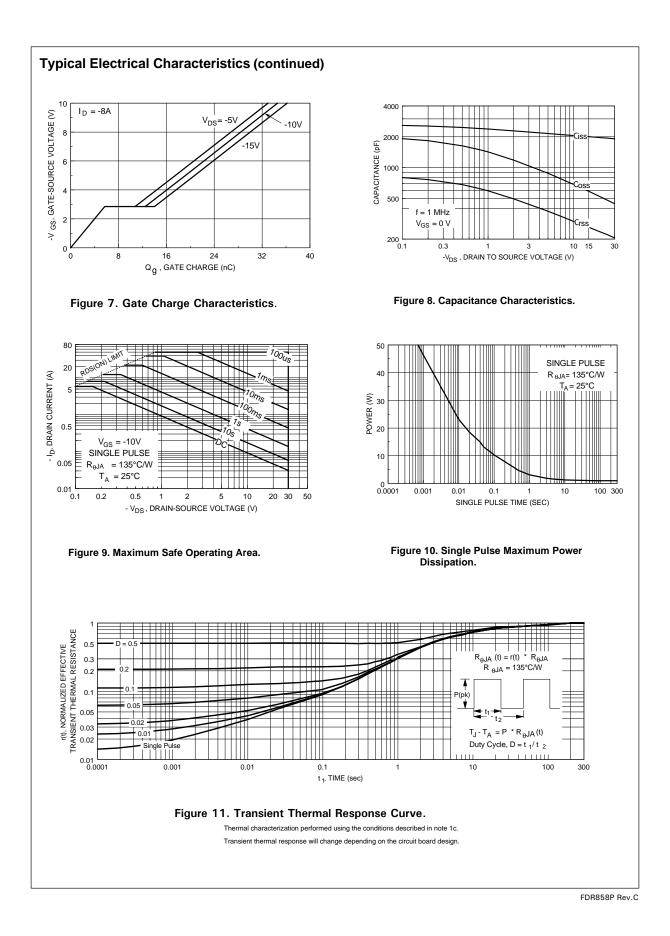
 P_{D}

W

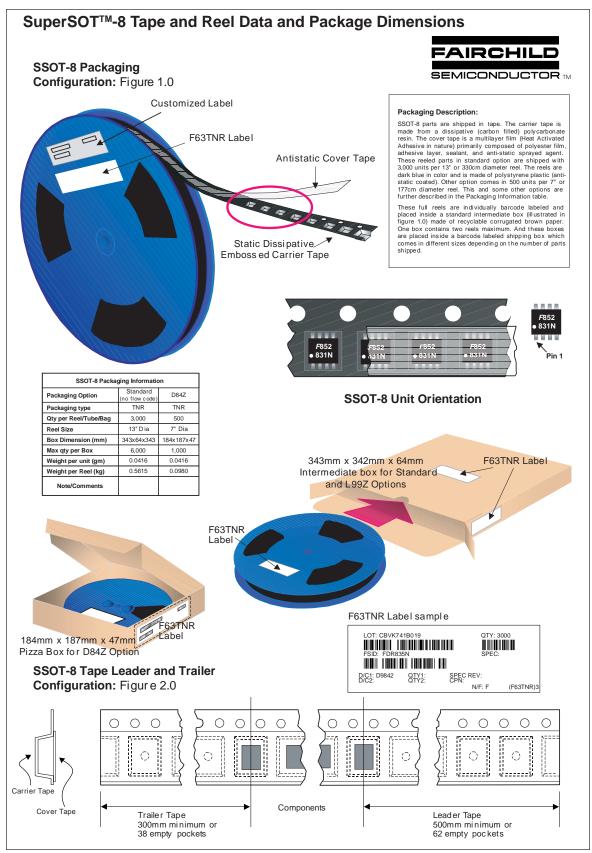
°C

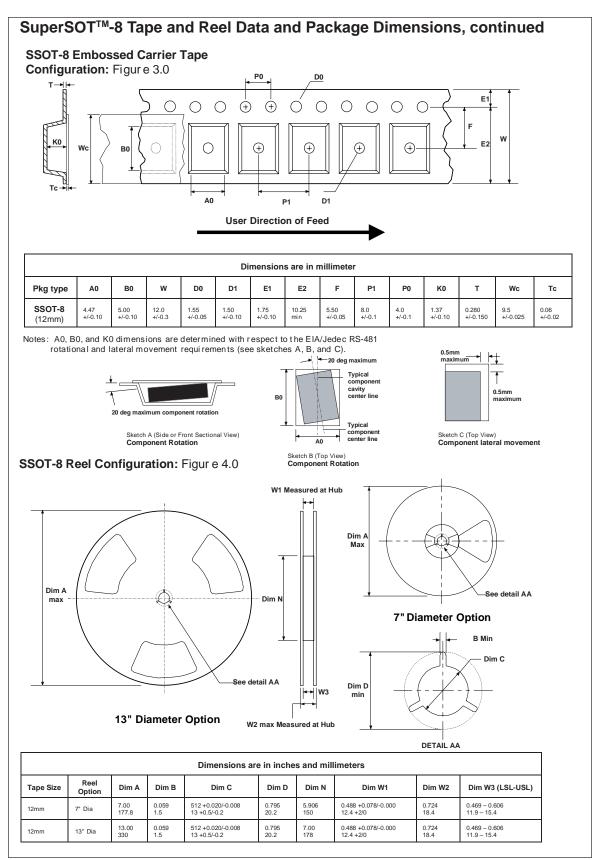
°C/W

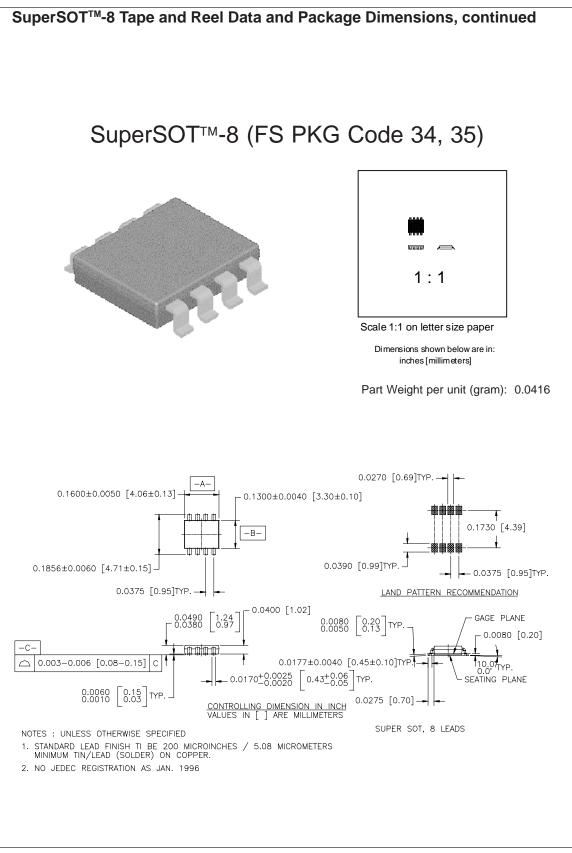

°C/W


OFF CHARA		Conditions	Min	Тур	Max	Units
	CTERISTICS					
	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$	-30			V
$\Delta BV_{DSS}/\Delta T_{J}$		$I_{\rm D}$ = -50 µA, Referenced to 25 °C		-22		mV /⁰C
	Zero Gate Voltage Drain Current	$V_{DS} = -24 V, V_{GS} = 0 V$			-1	μA
200	°	T ₁ = 55°C			-10	μA
GSS	Gate - Body Leakage Current	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
GSS		$V_{GS} = -20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			-100	nA
	TERISTICS (Note 2)		1			
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$	-1	-1.7	-3	V
$\Delta V_{GS(th)} / \Delta T_J$		$I_{\rm D}$ = -50 µA, Referenced to 25 °C		4		mV /°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -10 \text{ V}, \text{ I}_{D} = -8 \text{ A}$		0.0155	0.019	Ω
		T_= 125°C		0.021	0.03	1
		$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -6.3 \text{ A}$		0.022	0.028	
D(ON)		$V_{GS} = -10 \text{ V}, \text{ V}_{DS} = -5 \text{ V}$	-50			А
D _{FS}		$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -3.2 \text{ A}$		25		S
DYNAMIC CH	IARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = -15 \text{ V}, \ V_{GS} = 0 \text{ V},$		2010		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		590		pF
C _{rss}	Reverse Transfer Capacitance			260		pF
SWITCHING (CHARACTERISTICS (Note 2)					
D(on)	Turn - On Delay Time	$V_{DD} = -15 V, I_{D} = -1 A,$		12	22	ns
T	Turn - On Rise Time	$V_{GS} = -10V, R_{GEN} = 6 \Omega$		15	27	ns
D(off)	Turn - Off Delay Time			100	140	ns
f	Turn - Off Fall Time			55	80	ns
С ^а	Total Gate Charge	$V_{DS} = -15 \text{ V}, \ I_{D} = -8 \text{ A},$		21	30	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 5 V$		6		nC
Q _{gd}	Gate-Drain Charge			8		nC
DRAIN-SOU	IRCE DIODE CHARACTERISTICS AND MAXIM	MUM RATINGS				
s	Maximum Continuous Drain-Source Diode Forwa	ard Current			-0.67	А
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = -0.67 A$ (Note 2)		-0.7	-1.2	V

2. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2.0%.






August 1999, Rev. C

July 1999, Rev. C

September 1998, Rev. A

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E^2 CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR™ MICROWIRE™ POP™ PowerTrench™ QFET™ QS™ Quiet Series™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8

TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.