

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor 74ALVCH16373T

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of 74ALVCH16373T - IC LATCH TRANSP 16BIT 48TSSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

October 2001 Revised February 2002

74ALVCH16373

Low Voltage 16-Bit Transparent Latch with Bushold

General Description

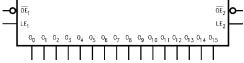
The ALVCH16373 contains sixteen non-inverting latches with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. The flip-flops appear to be transparent to the data when the Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup time is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH, the outputs are in a high impedance state.

The ALVCH16373 data inputs include active bushold circuitry, eliminating the need for external pull-up resistors to hold unused or floating data inputs at a valid logic level.

The 74ALVCH16373 is designed for low voltage (1.65V to 3.6V) V_{CC} applications with output compatibility up to 3.6V.

The 74ALVCH16373 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

Features


- 1.65V to 3.6V V_{CC} supply operation
- 3.6V tolerant control inputs and outputs
- Bushold on data inputs eliminates the need for external pull-up/pull-down resistors
- $\blacksquare t_{PD} (I_n \text{ to } O_n)$
 - 3.6 ns max for 3.0V to 3.6V V_{CC} 4.5 ns max for 2.3V to 2.7V V_{CC}
- 6.8 ns max for 1.65V to 1.95V V_{CC}
- Uses patented noise/EMI reduction circuitry
- Latch-up conforms to JEDEC JED78
- ESD performance: Human body model > 2000V
 - Machine model > 200V

Ordering Code:

Order Number	Number					
74ALVCH16373T	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide				
Devices also available in Tape and Peel. Specify by appending suffix letter "X" to the ordering code						

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering

Logic Symbol

© 2002 Fairchild Semiconductor Corporation DS500631

74ALVCH16373

Pin Descriptions

Din Nomes	Description		
Pin Names	Description		
OEn	Output Enable Input (Active LOW)		
LEn	Latch Enable Input		
I ₀ –I ₁₅	Bushold Inputs		
O ₀ -O ₁₅	Outputs		
NC	No Connect		

Truth Tables

	Inputs		Outputs
LE ₁	OE ₁	I ₀ —I ₇	0 ₀ -0 ₇
Х	Н	Х	Z
Н	L	L	L
н	L	Н	н
L	L	Х	O ₀
	Inputs		Outputs
LE ₂	Inputs OE ₂	I ₈ —I ₁₅	Outputs O ₈ -O ₁₅
LE ₂ X		I ₈ –I ₁₅ X	-
_	0E ₂		0 ₈ –0 ₁₅
x	OE ₂	X	0 ₈ -0 ₁₅ Z

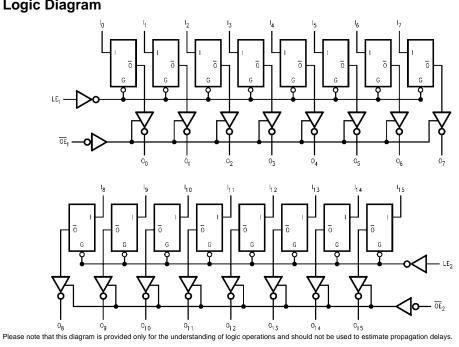
 H
 = HIGH Voltage Level

 L
 = LOW Voltage Level

 X
 = Immaterial (HIGH or LOW, control inputs may not float)

 Z
 = High Impedance

 O₀ = Previous O₀ before HIGH-to-LOW of Latch Enable


Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of 74ALVCH16373T - IC LATCH TRANSP 16BIT 48TSSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Functional Description

The 74ALVCH16373 contains sixteen edge D-type latches with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 16-bit operation. The following description applies to each byte. When the Latch Enable (LE_n) input is HIGH, data on the ${\rm I}_{\rm n}$ enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time

Logic Diagram

its I input changes. When LE_n is LOW, the latches store information that was present on the I inputs a setup time preceding the HIGH-to-LOW transition on LE_n. The 3-STATE outputs are controlled by the Output Enable (\overline{OE}_n) input. When \overline{OE}_n is LOW the standard outputs are in the 2-state mode. When $\overline{\text{OE}}_n$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of 74ALVCH16373T - IC LATCH TRANSP 16BIT 48TSSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (VI)	-0.5V to 4.6V
Output Voltage (V _O) (Note 2)	–0.5V to V _{CC} +0.5V
DC Input Diode Current (IIK)	
V ₁ < 0V	–50 mA
DC Output Diode Current (I _{OK})	
V _O < 0V	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T_{STG})	-65°C to +150°C

Recommended Operating Conditions (Note 3)

Power Supply	
Operating	1.65V to 3.6V
Input Voltage (V _I)	0V to V_{CC}
Output Voltage (V _O)	0V to V _{CC}
Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate (Δt/ΔV)	
V_{IN} = 0.8V to 2.0V, V_{CC} = 3.0V	10 ns/V

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

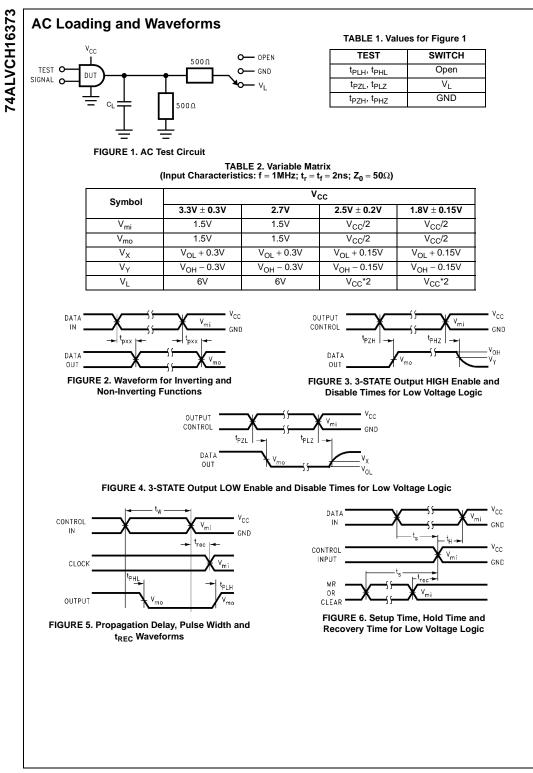
Note 2: I_O Absolute Maximum Rating must be observed.

Note 3: Floating or unused inputs must be held HIGH or LOW.

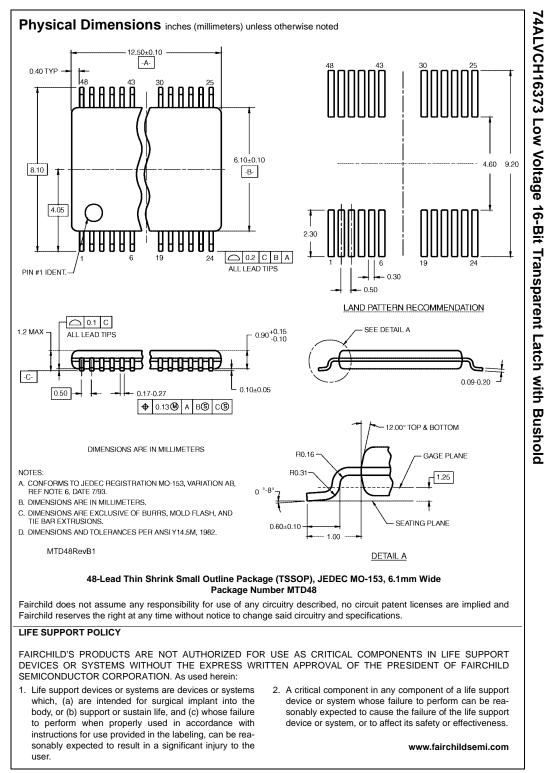
DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
/ _{IH}	HIGH Level Input Voltage		1.65 -1.95	0.65 x V _{CC}		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
/ _{IL}	LOW Level Input Voltage		1.65 -1.95		0.35 x V _{CC}	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
/ _{он}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 3.6	V _{CC} - 0.2		
		I _{OH} = -4 mA	1.65	1.2		
		I _{OH} = -6 mA	2.3	2		
		I _{OH} = -12 mA	2.3	1.7		V
			2.7	2.2		
			3.0	2.4		
		I _{OH} = -24 mA	3.0	2		
/ _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6		0.2	
		I _{OL} = 4 mA	1.65		0.45	
		I _{OL} = 6 mA	2.3		0.4	v
		$I_{OL} = 12mA$	2.3		0.7	v
			2.7		0.4	
		I _{OL} = 24 mA	3		0.55	
I	Input Leakage Current	$0 \le V_l \le 3.6V$	3.6		±5.0	μΑ
(HOLD)	Bushold Input Minimum	V _{IN} = 0.58V	1.65	25		
	Drive Hold Current	$V_{IN} = 1.07V$	1.65	-25		
		V _{IN} = 0.7V	2.3	45		
		$V_{IN} = 1.7V$	2.3	-45		μA
		V _{IN} = 0.8V	3.0	75		
		$V_{IN} = 2.0V$	3.0	-75		
		$0 < V_O \le 3.6V$	3.6		±500	
oz	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	3.6		±10	μΑ
сс	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μΑ
7l ^{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 -3.6		750	μΑ

AC Electrical Characteristics


		$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$								
Symbol	Parameter	C _L = 50 pF			C _L = 30 pF			Units		
Symbol		V $_{CC}=3.3V\pm0.3V$		V _{CC} = 2.7V		V $_{CC}$ = 2.5V \pm 0.2V		V $_{CC}$ = 1.8V \pm 0.15V		UTILS
		Min	Max	Min	Max	Min	Max	Min	Max	
t _W	Pulse Width	3.3		3.3		3.3		4.0		ns
t _S	Setup Time	1.1		1		1		2.5		ns
t _H	Hold Time	1.4		1.7		1.5		1.0		ns
t _{PHL} , t _{PLH}	Propagation Delay In to On	1.1	3.6		4.3	1	4.5	1.5	6.8	ns
t _{PHL} , t _{PLH}	Propagation Delay LE to On	1	3.9		4.6	1	4.9	1.5	7.8	ns
t _{PZL} , t _{PZH}	Output Enable Time	1.0	4.7		5.7	1.0	6.0	1.5	9.2	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.4	4.1		4.5	1.2	5.1	1.5	6.8	ns

Capacitance


Symbol	Baramatar		O an all the second	T _A =	T _A = +25°C		
	Parameter		Conditions	V _{cc}	Typical	Units	
CIN	Input Capacitance	Control	$V_I = 0V \text{ or } V_{CC}$	3.3	3	ъF	
		Data	$V_I = 0V \text{ or } V_{CC}$	3.3	6	pF	
COUT	Output Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	7	pF	
C _{PD} Power Dissip	Power Dissipation Capacitance	pation Capacitance Outputs Enabled	f = 10 MHz, C _L = 50 pF	3.3	22	pF	
				2.5	19		
		Outputs Disabled	f = 10 MHz, C _L = 50 pF	3.3	5		
				2.5	4		

74ALVCH16373

7