

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor 100EL16M

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

FAIRCHILD

SEMICONDUCTOR

100EL16 5V ECL Differential Receiver

General Description

The 100EL16 is a 5V differential receiver that contains an internally supply voltage source, V_{BB} . When used in a single ended input condition the unused input must be tied to V_{BB} . When operating in this mode use a 0.01 μF capacitor to decouple V_{BB} and V_{CC} and also limit the current sinking or sourcing capability to 0.5mA. When V_{BB} is not used it should be left open.

With inputs open or both inputs at V_{EE} the differential Q output defaults LOW.

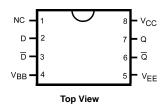
The 100 series is temperature compensated.

Features

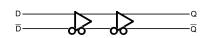
- Typical propagation delay of 250 ps
- Typical I_{EE} of 18 mA
- Internal pull-down resistors on inputs
 Fairchild MSOP-8 package is a drop-in replacement to ON TSSOP-8

January 2003

Revised January 2003


- Meets or exceeds JEDEC specification EIA/JESD78 IC latch-up test
- Moisture Sensitivity Level 1
- ESD Performance: Human Body Model > 2000V Machine Model > 200V

Ordering Code:


Order Number	Package Number	Product Code	Package Description
100EL16M	M08A	Top Mark KEL16	8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
100EL16M8 (Preliminary)	MA08D	KL16	8-Lead Molded Small Outline Package (MSOP), JEDEC MO-187, 3.0mm Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

Pin Descriptions

Pin Name	Description
Q, <u>Q</u>	ECL Data Outputs
D, D	ECL Data Inputs
V _{BB}	Reference Voltage
V _{CC}	Positive Supply
V _{EE}	Negative Supply
NC	No Connect

00EL16

Recommended Operating Conditions

PECL Supply Voltage (V _{CC})		Conditions				
$V_{EE} = 0V$	0.0V to +8.0V	PECL Power Supply				
NECL Supply Voltage (V _{EE})		$(V_{EE} = 0V)$	$V_{CC} = 4.2V$ to 5.5V			
$V_{CC} = 0V$	0.0V to -8.0V	NECL Power Supply				
PECL DC Input Voltage (VI)		$(V_{CC} = 0V)$	$V_{EE} = -4.2V$ to $-5.5V$			
$V_{EE} = 0V$	0.0V to +6.0V	Free Air Operating Temperature (T _A)	-40°C to +85°C			
NECL DC Input Voltage (VI)						
$V_{CC} = 0V$	0.0V to -6.0V					
DC Output Current (I _{OUT})						
Continuous	50 mA	Note 1: The "Absolute Maximum Ratings" are the	·			
Surge	100 mA	the safety of the device cannot be guaranteed. operated at these limits. The parametric values				
V _{BB} Sink/Source Current (I _{BB})	±0.5 mA	0.5 mA Characteristics tables are not guaranteed at the absolute n				
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	The "Recommended Operating Conditions" table for actual device operation.	e will define the conditions			

100EL PECL DC Electrical Characteristics $V_{CC} = 5.0V$; $V_{EE} = 0.0V$ (Note 2)

Symbol	Parameter	-40°C				25°C		85°C			Units
	Faranieter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
I _{EE}	Power Supply Current		18	22		18	22		21	26	mA
V _{OH}	Output HIGH Voltage (Note 3)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 3)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV
V _{IH}	Input HIGH Voltage (Single Ended)	3835		4120	3835		4120	3835		4120	mV
VIL	Input LOW Voltage (Single Ended)	3190		3525	3190		3525	3190		3525	mV
V _{BB}	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.74	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 4)	2.5		4.6	2.5		4.6	2.5		4.6	V
IIH	Input HIGH Current (Note 5)			150			150			150	μΑ
IIL	Input LOW Current (Note 5)	0.5			0.5			0.5			μA

Note 2: Input and output parameters vary 1 to 1 with V_{CC}. V_{EE} can vary +0.8V/–0.5V.

Note 3: Outputs are terminated through a 50 Ω Resistor to V_CC – 2.0V.

Absolute Maximum Ratings(Note 1)

Note 4: V_{IHCMR} minimum varies 1 to 1 with V_{EE}. V_{IHCMR} maximum varies 1-to-1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PPMIN} and 1V.

Note 5: Absolute value of the input HIGH and LOW current should not exceed the absolute value of the stated Min or Max specification.

Note: Devices are designed to meet the DC specifications after thermal equilibrium has been established. Circuit is tested with air flow greater than 500LFPM maintained.

100EL NECL DC Electrical Characteristics $V_{CC} = 0.0V$; $V_{EE} = -5.0V$ (Note 6)

Symbol	Parameter	_40°C				25°C			Units		
	Falameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
IEE	Power Supply Current		18	22		18	22		21	26	mA
V _{OH}	Output HIGH Voltage (Note 7)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 7)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
VIH	Input HIGH Voltage (Single Ended)	-1165		-880	-1165		-880	-1165		-880	mV
VIL	Input LOW Voltage (Single Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V _{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 8)	-2.5		-0.4	-2.5		-0.4	-2.5		-0.4	V
IIH	Input HIGH Current (Note 9)			150			150			150	μΑ
IIL	Input LOW Current (Note 9)	0.5			0.5			0.5			μA

Note 6: Input and output parameters vary 1 to 1 with V_{CC}. V_{EE} can vary +0.8V/–0.5V.

Note 7: Outputs are terminated through a 50 Ω Resistor to V_CC – 2.0V.

Note 8: V_{IHCMR} minimum varies 1 to 1 with V_{EE}. V_{IHCMR} maximum varies 1 to 1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PPMIN} and 1V.

Note 9: Absolute value of the input HIGH and LOW current should not exceed the absolute value of the stated Min or Max specification.

Note: Devices are designed to meet the DC specifications after thermal equilibrium has been established. Circuit is tested with air flow greater than 500LFPM maintained.

100EL AC Electrical Characteristics v_{CC} = 5V; v_{EE} = 0.0V or v_{CC} = 0.0V; v_{EE} = –5V

100EL16

(Note 10	U)(Note 11)											
Symbol	Parameter	−40°C			25°C			85°C			Units	Figure
	Falameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units	Number
f _{MAX}	Maximum Toggle Frequency		TBD			TBD			TBD		GHz	
t _{PLH} , t _{PHL}	Propagation Delay to Output (Diff)	125	250	375	175	250	325	205	280	355	DS	Figures
	(SE)	75	250	425	125	250	375	155	280	405	μs	1, 3
t _{SKEW}	Duty Cycle Skew (Note 12)		5	20		5	20		5	20	ps	
UITTER	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps	
V _{PP}	Input Swing	150		1000	150		1000	150		1000	mV	Figure 1
t _r , t _f	Output Rise Times Q (20% to 80%)	100	190	350	100	190	350	100	190	350	ps	Figure 2

Note 10: V_{EE} can vary +0.8V / -0.5V.

Note 11: Measured using a 750 mV input swing centered at V_{CC} - 1.32V; 50% duty cycle clock source; t_r = t_f = 250 ps (20% - 80%) at f_{IN} = 1 MHz. All loading with 50 Ω to V_{CC} - 2.0V.

Note 12: Duty cycle skew is the difference between a t_{PLH} and t_{PHL} propagation delay through a device under identical conditions.

Switching Waveforms

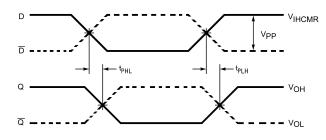
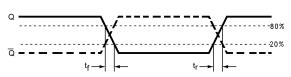



FIGURE 1. Differential to Differential Propagation Delay

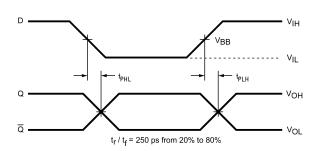
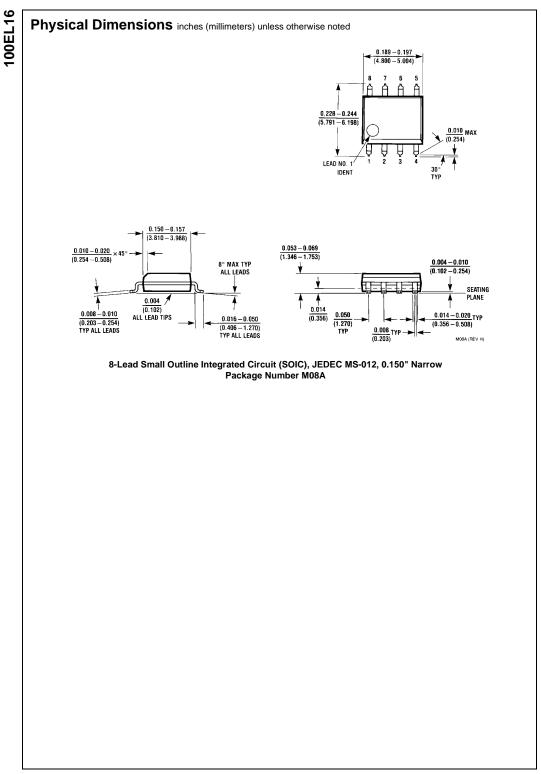
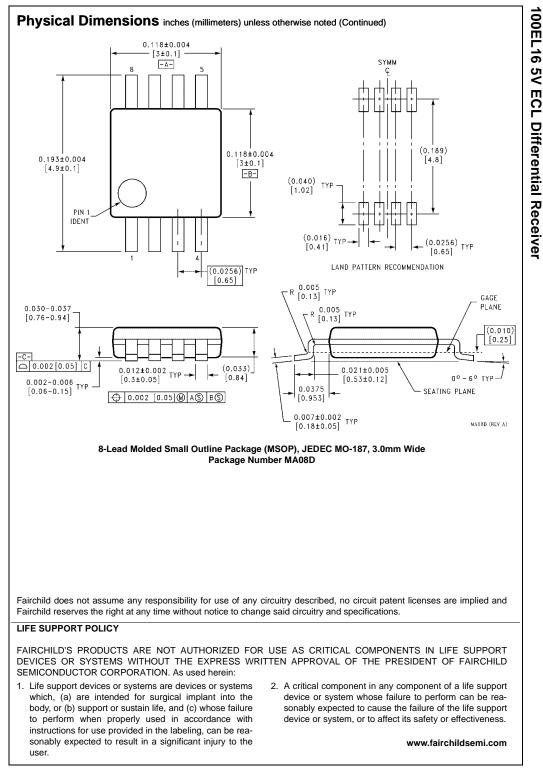




FIGURE 3. Single Ended to Differential Propagation Delay

