Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor FDC6331L

For any questions, you can email us directly: sales@integrated-circuit.com

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

April 2007

FDC6331L

Integrated Load Switch

General Description

This device is particularly suited for compact power management in portable electronic equipment where 2.5V to 8V input and 2.8A output current capability are needed. This load switch integrates a small N-Channel power MOSFET (Q1) that drives a large PChannel power MOSFET (Q2) in one tiny SuperSOTTI package.

Applications

- · Load switch
- Power management

Features

- -2.8 A, -8 V. $R_{DS(ON)}$ = 55 m Ω @ V_{GS} = -4.5 V $R_{DS(ON)}$ = 70 m Ω @ V_{GS} = -2.5 V $R_{DS(ON)}$ = 100 m Ω @ V_{GS} = -1.8 V
- Control MOSFET (Q1) includes Zener protection for ESD ruggedness (>6KV Human body model)
- High performance trench technology for extremely low R_{DS(ON)}

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{IN}	Maximum Input Voltage		± 8	V	
V _{ON/OFF}	High level ON/OFF voltage range		-0.5 to 8	V	
Load	Load Current - Continuous	(Note 1)	2.8	A	
	- Pulsed		9		
P _D	Maximum Power Dissipation	(Note 1)	0.7	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics

R _{0JA}	Thermal Resistance, Junction-to-Ambient	(Note 1)	180	°C/W
Rejc	Thermal Resistance, Junction-to-Case	(Note 1)	60	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
.331	FDC6331L	7"	8mm	3000 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics	•				•
BV _{IN}	Vin Breakdown Voltage	$V_{ON/OFF} = 0 \text{ V}, I_D = -250 \mu\text{A}$	8			V
Load	Zero Gate Voltage Drain Current	V _{IN} = 6.4 V, V _{ON/OFF} = 0 V			-1	μΑ
I _{FL}	Leakage Current, Forward	V _{ON/OFF} = 0 V, V _{IN} = 8 V			-100	nA
I _{RL}	Leakage Current, Reverse	V _{ON/OFF} = 0 V, V _{IN} = -8 V			100	nA
On Char	acteristics (Note 2)					
V _{ON/OFF (th)}	Gate Threshold Voltage	$V_{IN} = V_{ON/OFF}$, $I_D = -250 \mu A$	0.4	0.9	1.5	V
R _{DS(on)}	Static Drain–Source On–Resistance (Q2)	$V_{GS} = -4.5 \text{ V}, \qquad I_D = -2.8 \text{A}$ $V_{GS} = -2.5 \text{ V}, \qquad I_D = -2.5 \text{ A}$ $V_{GS} = -1.8 \text{ V}, \qquad I_D = -2.0 \text{ A}$		34 45 64	55 70 100	mΩ
R _{DS(on)}	Static Drain–Source On–Resistance (Q1)	$V_{GS} = 4.5 \text{ V}, \qquad I_D = 0.4 \text{A}$ $V_{GS} = 2.7 \text{ V}, \qquad I_D = 0.2 \text{ A}$		3.1 3.8	4 5	Ω

Drain-Source Diode Characteristics and Maximum Ratings

Is	Maximum Continuous Drain-Source Diode Forward Current			-0.6	A
V _{SD}	Drain–Source Diode Forward	$V_{ON/OFF} = 0 \text{ V}, I_S = -0.6 \text{ A} \text{ (Note 2)}$		-1.2	V
	Voltage		1		i

FDC6331L Load Switch Application Circuit

External Component Recommendation:

For additional in-rush current control, R2 and C1 can be added. For more information, see application note AN1030.

Notes: 1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guar anteed by design while $R_{\theta JA}$ is determined by the user's board design.

^{2.} Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%.

Figure 1. Conduction Voltage Drop Variation with Load Current.

Figure 3. Conduction Voltage Drop Variation with Load Current.

Figure 2. Conduction Voltage Drop Variation with Load Current.

Figure 4. On-Resistance Variation With Input Voltage

Figure 5. Transient Thermal Response Curve.

Thermal characterization performed on the conditions described in Note 2. Transient thermal response will change depends on the circuit board design.

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited

Datasheet of FDC6331L - IC LOAD SWITCH INT 8VIN SSOT-6

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

HiSeC™ Programmable Active Droop™ TinyLogic[®] i-Lo™ Across the board. Around the world™ OFFT® TINYOPTO™ ActiveArray™ ImpliedDisconnect™ $\mathsf{QS}^{\mathsf{TM}}$ TinyPower™ TinyWire™ Bottomless™ IntelliMAX™ QT Optoelectronics™ ISOPLANAR™ Build it Now™ Quiet Series™ TruTranslation™ CoolFET™ MICROCOUPLER™ RapidConfigure™ µSerDes™ UHC® $CROSSVOLT^{\text{TM}}$ MicroPak™ RapidConnect™ $\mathsf{CTL^{\mathsf{TM}}}$ MICROWIRE™ ScalarPump™ UniFET™ SMART START™ VCX™ MSX™ Current Transfer Logic™ MSXPro™ SPM[®] Wire™ DOME™ STEALTH™ F²CMOS™ OCX™ $\mathsf{EcoSPARK}^{\mathbb{R}}$ $OCXPro^{TM}$ SuperFET™ OPTOLOGIC® SuperSOT™-3 EnSigna™ OPTOPLANAR® FACT Quiet Series™ SuperSOT™-6 FACT[®] PACMAN™ SuperSOT™-8 FAST® РОР™ SyncFET™ FASTr™ Power220® ТСМ™ Power247® FPS™ The Power Franchise® FRFET® PowerEdge™ (l) TM

PowerSaver™

 $\mathsf{PowerTrench}^{\texttt{®}}$

GTO™

DISCLAIMENT FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

TinyBoost™

TinyBuck™

GlobalOptoisolator™

LIFE SUPPORT POLICYFAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information Formative or In Design		This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.		