# Excellent Integrated System Limited 

Stocking Distributor

Click to view price, real time Inventory, Delivery \& Lifecycle Information:
Fairchild Semiconductor
FDC6331L

For any questions, you can email us directly:
sales@integrated-circuit.com

## ＝AIRCHILD

こミMIロロVロー」ロTロフ м
April 2007

## FDC6331L

## Integrated Load Switch

## General Description

This device is particularly suited for compact power management in portable electronic equipment where 2.5 V to 8 V input and 2.8 A output current capability are needed．This load switch integrates a small N －Channel power MOSFET（Q1）that drives a large PChannel power MOSFET（Q2）in one tiny SuperSOT ${ }^{\text {TM }}-6$ package．

## Applications

－Load switch
－Power management

## Features

－$-2.8 \mathrm{~A},-8 \mathrm{~V} . \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=55 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$
$R_{\mathrm{DS}(\mathrm{ON})}=70 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{GS}}=-2.5 \mathrm{~V}$
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=100 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{GS}}=-1.8 \mathrm{~V}$
－Control MOSFET（Q1）includes Zener protection for ESD ruggedness（＞6KV Human body model）
－High performance trench technology for extremely low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$


SuperSOT ${ }^{\text {TM }}$－6


See Application Circuit

Absolute Maximum Ratings $T_{A}=25^{\circ} \mathrm{C}$ unless othemise noted

| Symbol | Parameter | Ratings | Units |
| :---: | :---: | :---: | :---: |
| VIN | Maximum Input Voltage | $\pm 8$ | V |
| V on／off | High level ON／OFF voltage range | -0.5 to 8 | V |
| Load | $\begin{aligned} \hline \text { Load Current } & \text { - Continuous } \\ & - \text { Pulsed } \end{aligned}$ | 2.8 | A |
|  |  | 9 |  |
| $\mathrm{P}_{\mathrm{D}}$ | Maximum Power Dissipation（Note 1） | 0.7 | W |
| $\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$ | Operating and Storage Junction Temperature Range | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |

## Thermal Characteristics

| $R_{\text {ӨJA }}$ | Thermal Resistance，Junction－to－Ambient | （Note 1） | 180 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- |
| $R_{\text {ӨJC }}$ | Thermal Resistance，Junction－to－Case | （Note 1） | 60 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

Package Marking and Ordering Information

| Device Marking | Device | Reel Size | Tape width | Quantity |
| :---: | :---: | :---: | :---: | :---: |
| .331 | FDC6331L | $7 \prime$ | 8 mm | 3000 units |

Electrical Characteristics
$T_{A}=25^{\circ} \mathrm{C}$ unless othervise noted

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Units |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Off Characteristics

| $\mathrm{BV}_{\text {IN }}$ | Vin Breakdown Voltage | $\mathrm{V}_{\text {ONOFF }}=0 \mathrm{~V}, \mathrm{l}_{\mathrm{D}}=-250 \mu \mathrm{~A}$ | 8 |  | V |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Load | Zero Gate Voltage Drain Current | $\mathrm{V}_{\text {IN }}=6.4 \mathrm{~V}, \quad \mathrm{~V}_{\text {ONOFF }}=0 \mathrm{~V}$ |  | -1 | $\mu \mathrm{A}$ |
| FFL | Leakage Current, Forward | $\mathrm{V}_{\text {ONOFF }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=8 \mathrm{~V}$ |  | -100 | nA |
| $\mathrm{l}_{\mathrm{LL}}$ | Leakage Current, Reverse | $\mathrm{V}_{\text {ONOFF }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=-8 \mathrm{~V}$ |  | 100 | nA |

On Characteristics (Note 2)

| Vonoff (th) | Gate Threshold Voltage | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ONOFF, }} \mathrm{l}_{\mathrm{D}}=-250 \mu \mathrm{~A}$ |  | 0.4 | 0.9 | 1.5 | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\text {DS(on) }}$ | Static Drain-Source On-Resistance (Q2) | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=-2.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=-1.8 \mathrm{~V}, \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{D}}=-2.8 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{D}}=-2.5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{D}}=-2.0 \mathrm{~A} \end{aligned}$ |  | $\begin{aligned} & 34 \\ & 45 \\ & 64 \end{aligned}$ | $\begin{gathered} 55 \\ 70 \\ 100 \end{gathered}$ | $\mathrm{m} \Omega$ |
| Ros(on) | Static Drain-Source On-Resistance (Q1) | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=2.7 \mathrm{~V}, \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{D}}=0.4 \mathrm{~A} \\ & \mathrm{l}_{\mathrm{D}}=0.2 \mathrm{~A} \\ & \hline \end{aligned}$ |  | 3.1 <br> 3.8 | $\begin{aligned} & \hline 4 \\ & 5 \end{aligned}$ | $\Omega$ |

Drain-Source Diode Characteristics and Maximum Ratings


Notes:
Notes:

1. $\mathrm{R}_{\text {өJA }}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\text {өJC }}$ is guar anteed by design while $R_{\theta J A}$ is determined by the user's board design.
2. Pulse Test: Pulse Width < 300 $\mu$ s, Duty Cycle $<2.0 \%$.

## FDC6331L Load Switch Application Circuit



External Component Recommendation:
For additional in-rush current control, R2 and C1 can be added. For more information, see application note AN1030.
electronic components


Figure 1. Conduction Voltage Drop Variation with Load Current.


Figure 3. Conduction Voltage Drop Variation with Load Current.


Figure 2. Conduction Voltage Drop Variation with Load Current.


Figure 4. On-Resistance Variation With Input Voltage


Figure 5. Transient Thermal Response Curve.
Thermal characterization performed on the conditions described in Note 2. Transient thermal response will change depends on the circuit board design.
electronic components

## FAIRCHILD

## TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks．

| ACEx ${ }^{(8)}$ | $\mathrm{HiSeC}^{\text {™ }}$ | Programmable Active Droop ${ }^{\text {TM }}$ | TinyLogic ${ }^{\text {® }}$ |
| :---: | :---: | :---: | :---: |
| Across the board．Around the world ${ }^{\text {TM }}$ | $i-L o^{\text {TM }}$ | QFET ${ }^{\circledR}$ | TINYOPTO ${ }^{\text {™ }}$ |
| ActiveArray ${ }^{\text {TM }}$ | ImpliedDisconnect ${ }^{\text {TM }}$ | QS ${ }^{\text {TM }}$ | TinyPower ${ }^{\text {TM }}$ |
| Bottomless ${ }^{\text {TM }}$ | IntelliMAX ${ }^{\text {TM }}$ | QT Optoelectronics ${ }^{\text {™ }}$ | TinyWire ${ }^{\text {TM }}$ |
| Build it Now ${ }^{\text {TM }}$ | ISOPLANAR ${ }^{\text {TM }}$ | Quiet Series ${ }^{\text {TM }}$ | TruTranslation ${ }^{\text {TM }}$ |
| CoolFET ${ }^{\text {tm }}$ | MICROCOUPLER ${ }^{\text {™ }}$ | RapidConfigure ${ }^{\text {TM }}$ | $\mu$ SerDes $^{\text {™ }}$ |
| CROSSVOLT ${ }^{\text {TM }}$ | MicroPak ${ }^{\text {TM }}$ | RapidConnect ${ }^{\text {TM }}$ | UHC ${ }^{\text {® }}$ |
| CTL ${ }^{\text {M }}$ | MICROWIRE ${ }^{\text {TM }}$ | ScalarPump ${ }^{\text {TM }}$ | UniFET ${ }^{\text {TM }}$ |
| Current Transfer Logic ${ }^{\text {TM }}$ | MSX ${ }^{\text {™ }}$ | SMART START ${ }^{\text {TM }}$ | VCX ${ }^{\text {™ }}$ |
| DOME ${ }^{\text {TM }}$ | MSXPro ${ }^{\text {™ }}$ | SPM ${ }^{\circledR}$ | Wire ${ }^{\text {TM }}$ |
| $\mathrm{E}^{2} \mathrm{CMOS}^{\text {TM }}$ | OCX ${ }^{\text {¹ }}$ | STEALTH ${ }^{\text {™ }}$ |  |
| EcoSPARK ${ }^{\circledR}$ | OCXPro ${ }^{\text {¹ }}$ | SuperFET ${ }^{\text {TM }}$ |  |
| EnSigna ${ }^{\text {™ }}$ | OPTOLOGIC ${ }^{\circledR}$ | SuperSOT ${ }^{\text {TM }}$－3 |  |
| FACT Quiet Series ${ }^{\text {TM }}$ | OPTOPLANAR ${ }^{\circledR}$ | SuperSOT ${ }^{\text {TM }}$－6 |  |
| FACT ${ }^{\circledR}$ | PACMAN ${ }^{\text {TM }}$ | SuperSOT ${ }^{\text {TM }}$－8 |  |
| $\mathrm{FAST}^{\text {® }}$ | POP ${ }^{\text {¹ }}$ | SyncFET ${ }^{\text {TM }}$ |  |
| FASTr ${ }^{\text {TM }}$ | Power220 ${ }^{\text {® }}$ | TCM ${ }^{\text {™ }}$ |  |
| FPS ${ }^{\text {™ }}$ | Power247 ${ }^{\circledR}$ | The Power Franchise ${ }^{\circledR}$ |  |
| FRFET ${ }^{\circledR}$ | PowerEdge ${ }^{\text {TM }}$ | （1）тм |  |
| GlobalOptoisolator ${ }^{\text {TM }}$ | PowerSaver ${ }^{\text {TM }}$ | TinyBoost ${ }^{\text {TM }}$ |  |
| GTO ${ }^{\text {™ }}$ | PowerTrench ${ }^{\circledR}$ | TinyBuck ${ }^{\text {TM }}$ |  |

## DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY，FUNCTION OR DESIGN．FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN；NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS，NOR THE RIGHTS OF OTHERS．THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD＇S WORLDWIDE TERMS AND CONDITIONS， SPECIFICALLY THE WARRANTY THEREIN，WHICH COVERS THESE PRODUCTS．

## LIFE SUPPORT POLICY

FAIRCHILD＇S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION．

As used herein：
1．Life support devices or systems are devices or systems which，（a）are intended for surgical implant into the body or（b） support or sustain life，and（c）whose failure to perform when properly used in accordance with instructions for use provided in the labeling，can be reasonably expected to result in a significant injury of the user．

2．A critical component in any component of a life support， device，or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system，or to affect its safety or effectiveness．

PRODUCT STATUS DEFINITIONS
Definition of Terms

| Datasheet Identification | Product Status | Definition |
| :--- | :--- | :--- |
| Advance Information | Formative or In Design | This datasheet contains the design specifications for product <br> development．Specifications may change in any manner <br> without notice． |
| Preliminary | First Production | This datasheet contains preliminary data；supplementary data will <br> be published at a later date．Fairchild Semiconductor reserves the <br> right to make changes at any time without notice to improve <br> design． |
| No Identification Needed | Full Production | This datasheet contains final specifications．Fairchild <br> Semiconductor reserves the right to make changes at any time <br> without notice to improve design． |
| Obsolete | Not In Production | This datasheet contains specifications on a product that has been <br> discontinued by Fairchild Semiconductor．The datasheet is printed <br> for reference information only． |

