Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor FDC658P

For any questions, you can email us directly: sales@integrated-circuit.com

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited

Datasheet of FDC658P - MOSFET P-CH 30V 4A SSOT-6

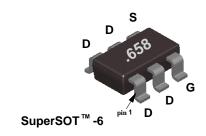
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

February 1999

FDC658P

Single P-Channel, Logic Level, PowerTrench™ MOSFET

General Description


This P-Channel Logic Level MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.


These devices are well suited for notebook computer applications: load switching and power management, battery charging circuits, and DC/DC conversion.

Features

- -4 A, -30 V. $R_{DS(ON)} = 0.050 \ \Omega$ @ $V_{GS} =$ -10 V $R_{DS(ON)} = 0.075 \ \Omega$ @ $V_{GS} =$ -4.5 V.
- Low gate charge (8nC typical).
- High performance trench technology for extremely low R_{DS(ON)}.
- SuperSOTTM-6 package: small footprint (72% smaller than standard SO-8); low profile (1mm thick).

Absolute Maximum Ratings	T _A = 25°C unless otherwise note
--------------------------	---

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-30	V
V_{GSS}	Gate-Source Voltage - Continuous		±20	V
I _D	Drain Current - Continuous	(Note 1a)	-4	А
	- Pulsed		-20	
P_{D}	Maximum Power Dissipation	(Note 1a)	1.6	W
		(Note 1b)	0.8	
T_J , T_{STG}	Operating and Storage Temperature Range		-55 to 150	℃
THERMA	AL CHARACTERISTICS	<u>.</u>		•
R _{eJA}	Thermal Resistance, Junction-to-Ambient (Note 1a)		78	°C/W
R _{eJC}	Thermal Resistance, Junction-to-Ca	ASE (Note 1)	30	°C/W

^{© 1999} Fairchild Semiconductor Corporation

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited

Datasheet of FDC658P - MOSFET P-CH 30V 4A SSOT-6

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Symbol	Parameter	Conditions	Min	Тур	Max	Units
OFF CHAR	ACTERISTICS	•		•		•
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$	-30			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	$I_D = -250 \mu\text{A}$, Referenced to 25 °C		-22		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 \text{ V}, \ V_{GS} = 0 \text{ V}$			-1	μΑ
		T _J = 55 °C			-10	μΑ
I _{GSSF}	Gate - Body Leakage, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
GSSR	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
	CTERISTICS (Note 2)		•		•	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$	-1	-1.7	-3	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold VoltageTemp.Coefficient	I _D =-250 μA, Referenced to 25 °C		4.1		mV/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -10 \text{ V}, I_D = -4.0 \text{ A}$		0.041	0.05	Ω
		T _J = 125 °C		0.058	0.08	1
		$V_{GS} = -4.5 \text{ V}, I_{D} = -3.4 \text{ A}$		0.06	0.075	
I _{D(on)}	On-State Drain Current	$V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V}$	-20			Α
g _{FS}	Forward Transconductance	$V_{DS} = -5V, I_{D} = -4 A$		9		S
DYNAMIC CH	HARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = -15 \text{ V}, \ V_{GS} = 0 \text{ V},$		750		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		220		pF
C _{rss}	Reverse Transfer Capacitance			100		pF
SWITCHING	CHARACTERISTICS (Note 2)					
t _{D(on)}	Turn - On Delay Time	$V_{DD} = -15 \text{ V}, I_{D} = -1 \text{ A},$		12	22	ns
t,	Turn - On Rise Time	$V_{GS} = -10 \text{ V}, \ R_{GEN} = 6 \Omega$		14	25	ns
t _{D(off)}	Turn - Off Delay Time			24	38	ns
ţ	Turn - Off Fall Time			16	27	ns
Q_g	Total Gate Charge	$V_{DS} = -15 \text{ V}, I_{D} = -4.0 \text{ A},$		8	12	nC
Q_{gs}	Gate-Source Charge	$V_{GS} = -5 V$		1.8		nC
Q_{gd}	Gate-Drain Charge			3		nC
DRAIN-SOU	RCE DIODE CHARACTERISTICS					
Is	Continuous Source Diode Current				-1.3	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = -1.3 A (Note 2)		-0.76	-1.2	V

Notes

- a. 78°C/W when mounted on a 1 in² pad of 2oz Cu on FR-4 board.
- b. 156°C/W when mounted on a minimum pad of 2oz Cu on FR-4 board.
- 2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

^{1.} R_{gut} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{guc} is guaranteed by design while R_{gcA} is determined by the user's board design.

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Typical Electrical Characteristics

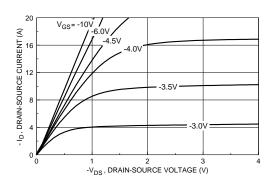


Figure 1. On-Region Characteristics.

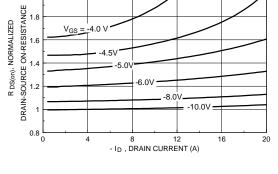


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

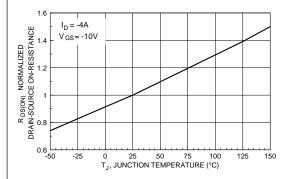


Figure 3. On-Resistance Variation with Temperature.



Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

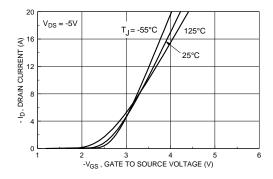


Figure 5. Transfer Characteristics.

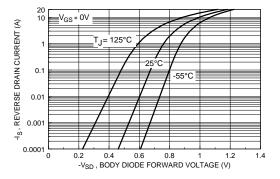


Figure 6. Body Diode Forward Voltage **Variation with Source Current** and Temperature.

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Typical Electrical Characteristics (continued)

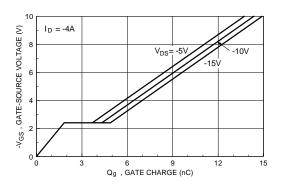


Figure 7. Gate Charge Characteristics.

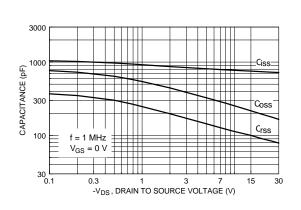
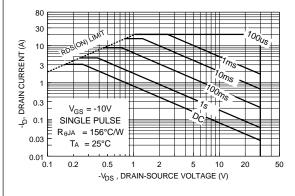
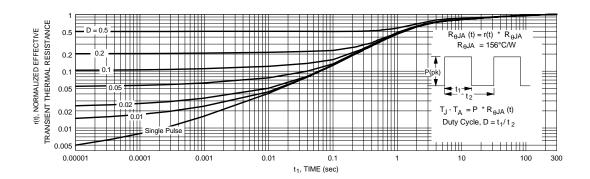



Figure 8. Capacitance Characteristics.

SINGLE PULSE $R_{\theta JA} = 156^{\circ}\text{C/W}$ $T_A = 25^{\circ}\text{C}$


300

0 0.01 0.1 1 10 10 SINGLE PULSE TIME (SEC)

Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

€ 3

Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1b.

Transient thermal response will change depending on the circuit board design.

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of FDC658P - MOSFET P-CH 30V 4A SSOT-6

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ ISOPLANAR™ COOIFET™ MICROWIRE™

CROSSVOLTTM POPTM

E²CMOS[™] PowerTrench[™]

FACTTM QSTM

 $\begin{array}{lll} \mathsf{FACT} \ \mathsf{Quiet} \ \mathsf{Series^{\mathsf{TM}}} & \mathsf{Quiet} \ \mathsf{Series^{\mathsf{TM}}} \\ \mathsf{FAST}^{\otimes} & \mathsf{SuperSOT^{\mathsf{TM}}}\text{-}3 \\ \mathsf{FASTr^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}}\text{-}6 \\ \mathsf{GTO^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}}\text{-}8 \\ \mathsf{HiSeC^{\mathsf{TM}}} & \mathsf{TinyLogic^{\mathsf{TM}}} \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.