

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[Fairchild Semiconductor](#)

[CD4011BCMX](#)

For any questions, you can email us directly:

sales@integrated-circuit.com

October 1987
Revised March 2002

CD4001BC/CD4011BC

Quad 2-Input NOR Buffered B Series Gate • Quad 2-Input NAND Buffered B Series Gate

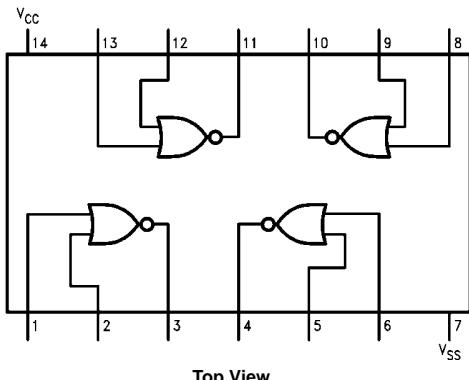
General Description

The CD4001BC and CD4011BC quad gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. They have equal source and sink current capabilities and conform to standard B series output drive. The devices also have buffered outputs which improve transfer characteristics by providing very high gain.

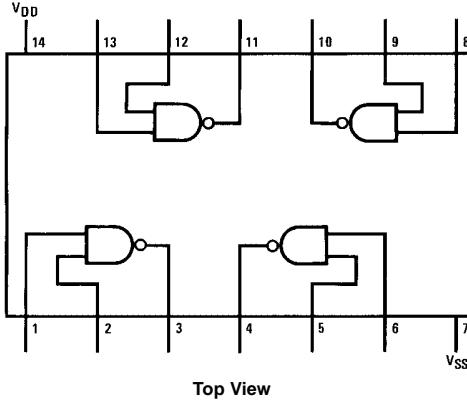
All inputs are protected against static discharge with diodes to V_{DD} and V_{SS} .

Features

- Low power TTL:
Fan out of 2 driving 74L compatibility: or 1 driving 74LS
- 5V–10V–15V parametric ratings
- Symmetrical output characteristics
- Maximum input leakage 1 μ A at 15V over full temperature range

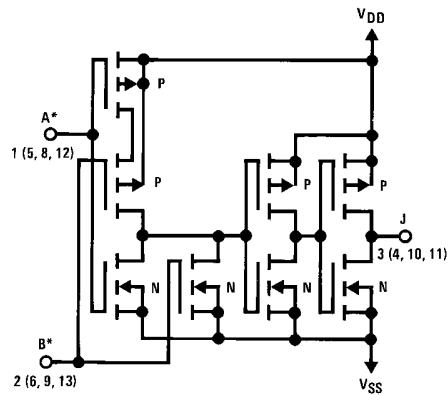

Ordering Code:

Order Number	Package Number	Package Description
CD4001BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4001BCSJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4001BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
CD4011BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4011BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

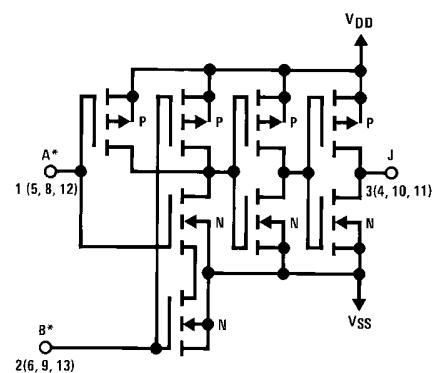

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagrams

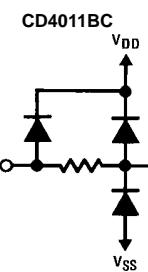
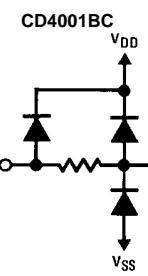
Pin Assignments for DIP, SOIC and SOP
CD4001BC



Pin Assignments for DIP and SOIC
CD4011BC



CD4001BC/CD4011BC



Schematic Diagrams

$\frac{1}{4}$ of device shown
 $J = A + B$
 Logical "1" = HIGH
 Logical "0" = LOW
 All inputs protected by standard
 CMOS protection circuit.

$\frac{1}{4}$ of device shown
 $J = A \cdot B$
 Logical "1" = HIGH
 Logical "0" = LOW
 All inputs protected by standard
 CMOS protection circuit.

CD4001BC/CD4011BC

Absolute Maximum Ratings (Note 1)

(Note 2)

Voltage at any Pin	−0.5 to V_{DD} +0.5V	Operating Range (V_{DD})	3 V_{DC} to 15 V_{DC}
Power Dissipation (P_D)		Operating Temperature Range	
Dual-In-Line	700 mW	CD4001BC, CD4011BC	−55°C to +125°C
Small Outline	500 mW		
V_{DD} Range	−0.5 V_{DC} to +18 V_{DC}		
Storage Temperature (T_S)	−65°C to +150°C		
Lead Temperature (T_L)			
(Soldering, 10 seconds)	260°C		

Recommended Operating Conditions

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics tables provide conditions for actual device operation.

Note 2: All voltages measured with respect to V_{SS} unless otherwise specified.

DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	−55°C		+25°C			+125°C		Units
			Min	Max	Min	Typ	Max	Min	Max	
I_{DD}	Quiescent Device Current	$V_{DD} = 5V, V_{IN} = V_{DD}$ or V_{SS}	0.25		0.004	0.25		7.5		μA
		$V_{DD} = 10V, V_{IN} = V_{DD}$ or V_{SS}	0.5		0.005	0.50		15		
		$V_{DD} = 15V, V_{IN} = V_{DD}$ or V_{SS}	1.0		0.006	1.0		30		
V_{OL}	LOW Level Output Voltage	$V_{DD} = 5V$	0.05		0	0.05		0.05		V
		$V_{DD} = 10V, I_{O1} < 1 \mu A$	0.05		0	0.05		0.05		
		$V_{DD} = 15V$	0.05		0	0.05		0.05		
V_{OH}	HIGH Level Output Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95		V
		$V_{DD} = 10V, I_{O1} < 1 \mu A$	9.95		9.95	10		9.95		
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
V_{IL}	LOW Level Input Voltage	$V_{DD} = 5V, V_O = 4.5V$	1.5		2	1.5		1.5		V
		$V_{DD} = 10V, V_O = 9.0V$	3.0		4	3.0		3.0		
		$V_{DD} = 15V, V_O = 13.5V$	4.0		6	4.0		4.0		
V_{IH}	HIGH Level Input Voltage	$V_{DD} = 5V, V_O = 0.5V$	3.5		3.5	3		3.5		V
		$V_{DD} = 10V, V_O = 1.0V$	7.0		7.0	6		7.0		
		$V_{DD} = 15V, V_O = 1.5V$	11.0		11.0	9		11.0		
I_{OL}	LOW Level Output Current (Note 3)	$V_{DD} = 5V, V_O = 0.4V$	0.64		0.51	0.88		0.36		mA
		$V_{DD} = 10V, V_O = 0.5V$	1.6		1.3	2.25		0.9		
		$V_{DD} = 15V, V_O = 1.5V$	4.2		3.4	8.8		2.4		
I_{OH}	HIGH Level Output Current (Note 3)	$V_{DD} = 5V, V_O = 4.6V$	−0.64		−0.51	−0.88		−0.36		mA
		$V_{DD} = 10V, V_O = 9.5V$	−1.6		−1.3	−2.25		−0.9		
		$V_{DD} = 15V, V_O = 13.5V$	−4.2		−3.4	−8.8		−2.4		
I_{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		−0.10		$−10^{-5}$	−0.10		−1.0	μA
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10^{-5}	0.10		1.0	

Note 3: I_{OL} and I_{OH} are tested one output at a time.

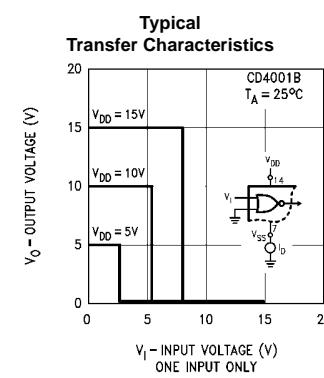
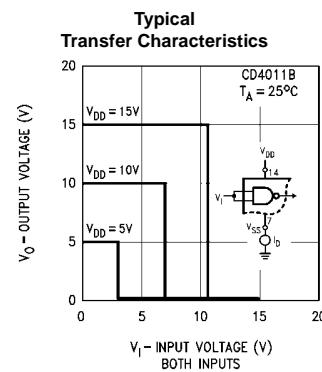
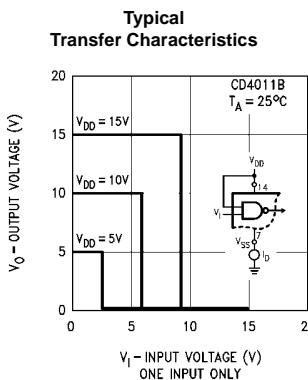
AC Electrical Characteristics (Note 4)

CD4001BC: $T_A = 25^\circ C$, Input $t_r, t_f = 20$ ns, $C_L = 50$ pF, $R_L = 200k$. Typical temperature coefficient is 0.3%/°C.

Symbol	Parameter	Conditions	Typ	Max	Units
t_{PHL}	Propagation Delay Time, HIGH-to-LOW Level	$V_{DD} = 5V$	120	250	ns
		$V_{DD} = 10V$	50	100	
		$V_{DD} = 15V$	35	70	
t_{PLH}	Propagation Delay Time, LOW-to-HIGH Level	$V_{DD} = 5V$	110	250	ns
		$V_{DD} = 10V$	50	100	
		$V_{DD} = 15V$	35	70	
t_{THL}, t_{TLH}	Transition Time	$V_{DD} = 5V$	90	200	ns
		$V_{DD} = 10V$	50	100	
		$V_{DD} = 15V$	40	80	
C_{IN}	Average Input Capacitance	Any Input	5	7.5	pF
C_{PD}	Power Dissipation Capacity	Any Gate	14		pF

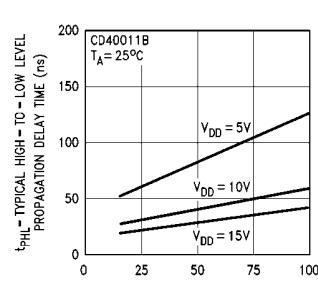
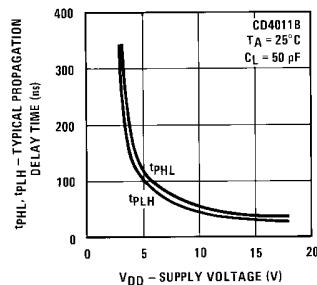
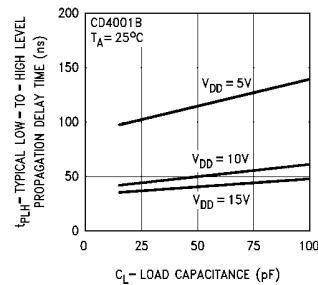
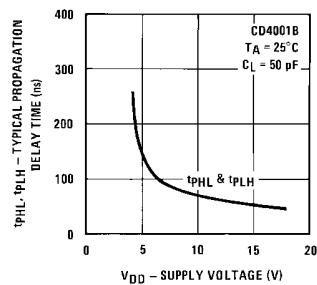
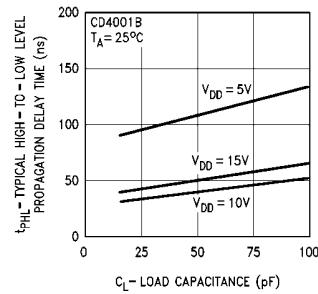
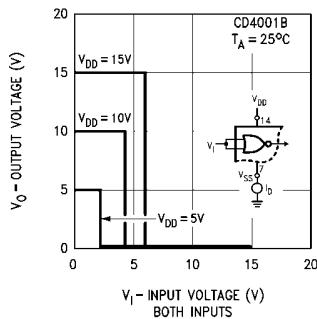
Note 4: AC Parameters are guaranteed by DC correlated testing.

CD4001BC/CD4011BC

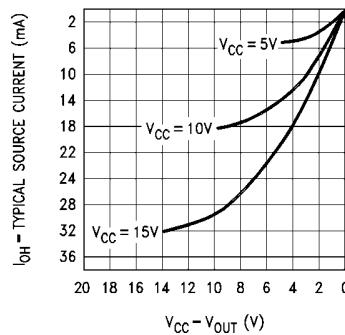
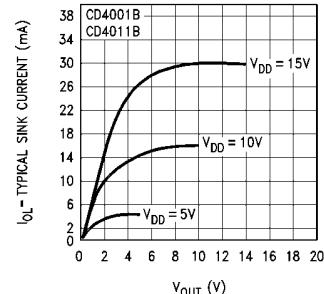
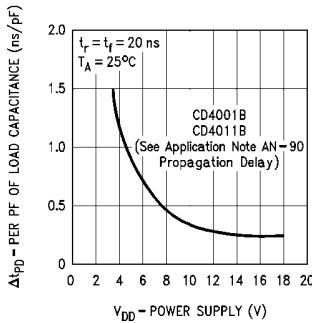
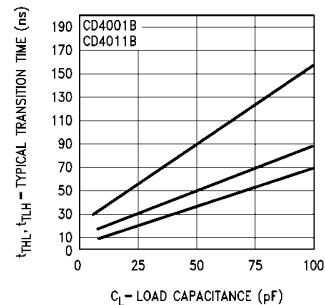
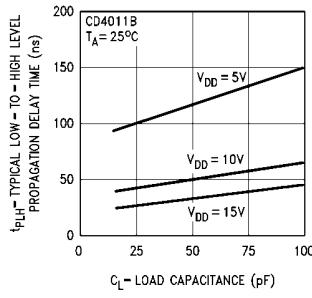



AC Electrical Characteristics (Note 5)

CD4011BC: $T_A = 25^\circ\text{C}$, Input t_i ; $t_f = 20$ ns. $C_L = 50$ pF, $R_L = 200\text{k}$. Typical Temperature Coefficient is $0.3\text{}/^\circ\text{C}$.

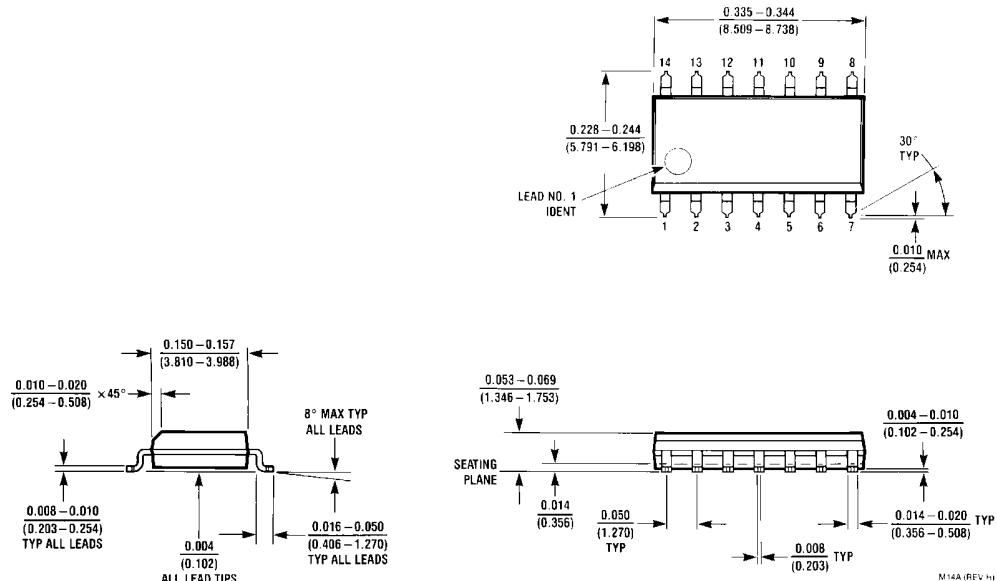
Symbol	Parameter	Conditions	Typ	Max	Units
t_{PHL}	Propagation Delay, HIGH-to-LOW Level	$V_{DD} = 5\text{V}$	120	250	ns
		$V_{DD} = 10\text{V}$	50	100	
		$V_{DD} = 15\text{V}$	35	70	
t_{PLH}	Propagation Delay, LOW-to-HIGH Level	$V_{DD} = 5\text{V}$	85	250	ns
		$V_{DD} = 10\text{V}$	40	100	
		$V_{DD} = 15\text{V}$	30	70	
$t_{\text{THL}}, t_{\text{TLH}}$	Transition Time	$V_{DD} = 5\text{V}$	90	200	ns
		$V_{DD} = 10\text{V}$	50	100	
		$V_{DD} = 15\text{V}$	40	80	
C_{IN}	Average Input Capacitance	Any Input	5	7.5	pF
C_{PD}	Power Dissipation Capacity	Any Gate	14		pF







Note 5: AC Parameters are guaranteed by DC correlated testing.

Typical Performance Characteristics

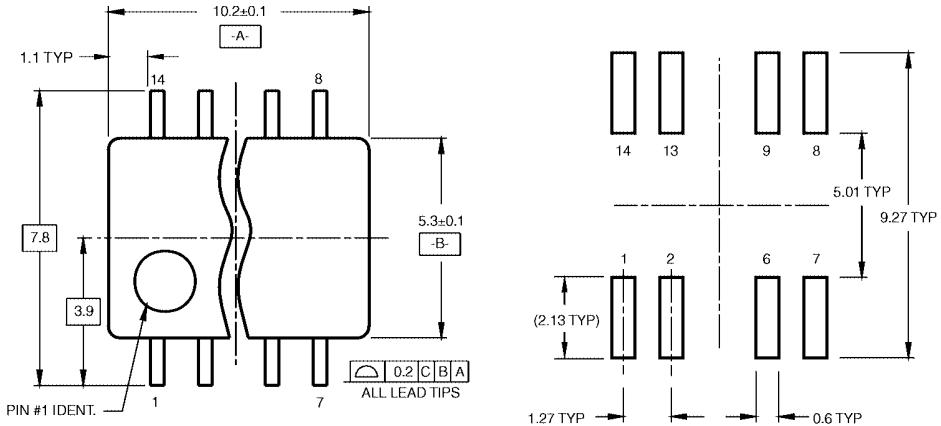





Typical Performance Characteristics (Continued)

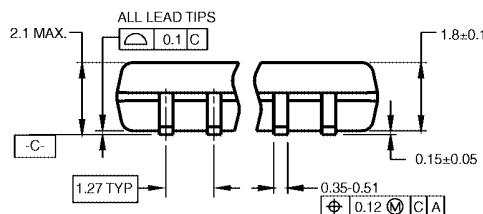
Typical Transfer Characteristics


CD4001BC/CD4011BC

Typical Performance Characteristics (Continued)

CD4001BC/CD4011BC

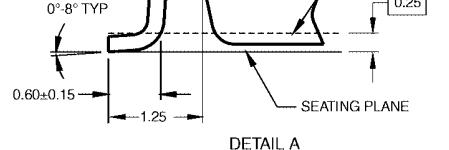
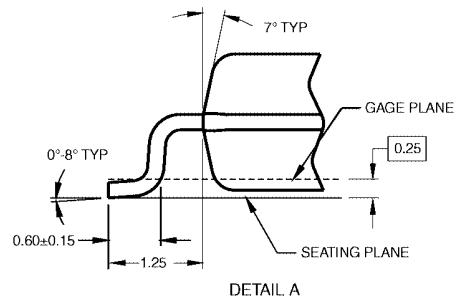
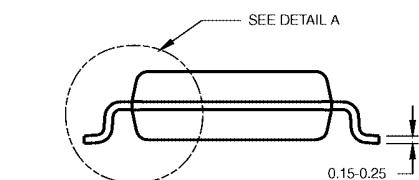

Physical Dimensions inches (millimeters) unless otherwise noted


14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
Package Number M14A

CD4001BC/CD4011BC

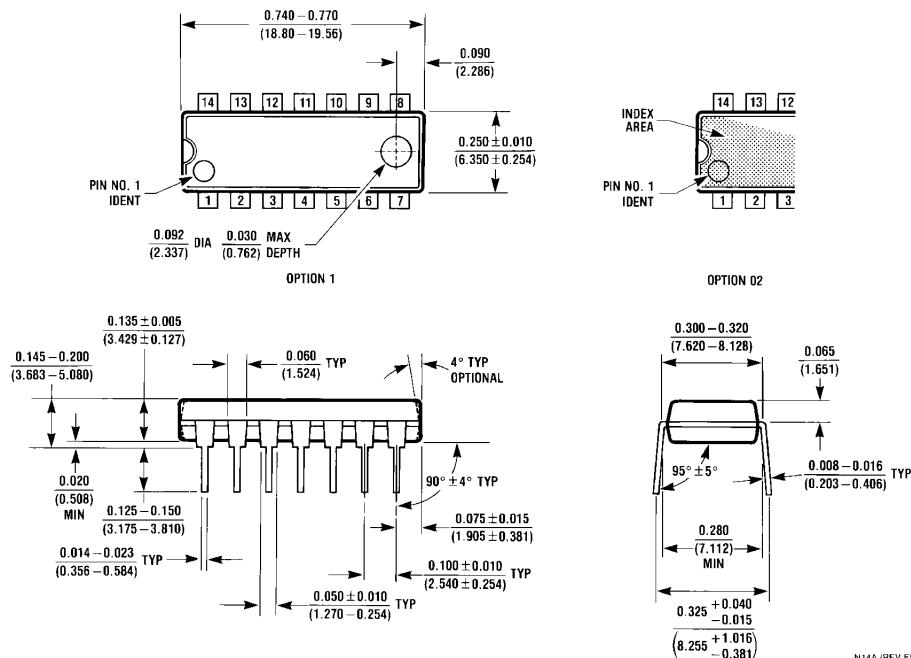
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS

NOTES:


- A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

M14DRevB1

14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package Number M14D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com